2023

M.Sc.

Third Semester

CORE – 10

PHYSICS

Course Code: MPHC 3.21 (Atomic & Molecular Spectroscopy)

Total Mark: 70 Time: 3 hours Pass Mark: 28

6

5 2

Answer five questions, taking one from each unit.

UNIT-I

- 1. (a) Obtain the condition which determines Sommerfeld allowed elliptical orbits in hydrogen atom. 8
 - (b) In case of Sommerfeld theory of elliptic orbit of hydrogen atom, show that the total energy expression is same as that obtained by Bohr model.
- 2. (a) Prove that in Stern-Gerlach experiment $D_x = \frac{\mu}{2M} \frac{dB}{dx} \left(\frac{d}{\upsilon}\right)^2$, where the symbols have their usual meaning. 7
 - (b) Give detail description of the production of fine structure lines in H_{α} .
 - (c) Write a short note on hyperfine structure of spectral lines.

UNIT-II

3.	(a)	Apply variation method of chemical bonding to find the ground s	state
		energy of hydrogen atom.	5
	(b)	Describe hydrogen molecule and show that Pauli's exclusion	
		principle is not contradicted.	9
4.	(a)	Discuss Born Oppenheimer approximation.	6

- (b) What are the causes of excitation in a molecule? Discuss molecule as a rigid rotator. 4
- (c) Describe how moment of inertia and bond length are determined in case of linear triatomic molecule. 4

UNIT-III

5.	(a)	Explain the salient features of a pure rotational spectra by consider	ing
		a diatomic molecule as a rigid rotator.	5
	(b)	Explain diatomic molecule as a non rigid rotator.	6
	(c)	HCl molecule has a rotational constant B value of 1059.3 m ⁻¹ and	a
		centrifugal distortion constant D of 5.3×10^{-2} m ⁻¹ . Estimate the	
		vibrational frequency and force constant of the molecule. Given,	
		mass of proton = 1.67×10^{-27} kg and	
		mass of chlorine = 58.5×10^{-27} kg.	3
6.	(a)	What is a vibrational spectra? Prove that the vibrational energy level	els
		are equally spaced.	5
	(b)	Describe vibrational-rotational spectra in detail.	5
	(c)	Discuss pure rotational Raman spectra.	4

UNIT-IV

7.	(a)	Show that electron spin spectra fall at considerable higher frequency	y
		as compared to nuclear spin spectra.	2
	(b)	Discuss nuclear magnetic resonance.	4
	(c)	Describe NMR instrumentation and explain the working of	
		continuous wave mode NMR detector.	8
8.	(a)	Discuss the spin relaxation mechanisms in ESR spectroscopy.	4
	(b)	Explain how hyperfine structure of ESR spectroscopy is obtained.	7
	(c)	What is Doppler shift and how does it occur in ESR spectroscopy?)
			3

UNIT-V

9. (a) What is nuclear quadrupole resonance (NQR)? Briefly describe it.

4

(b) In NQR spectroscopy, derive the expression of frequency of transition for axially symmetric system. Calculate the frequencies of transition and energies associated with the transition for a nuclei

having spin $I = \frac{5}{2}$. Illustrate with energy level diagram. 4 + 6 = 10

10. (a) What is Mössbauer effect? Briefly describe it.
(b) Discuss recoilless emission and absorption in Mössbauer spectroscopy.
(c) What is Auger electron spectroscopy? Briefly discuss Auger effect.

3