2023 M.Sc. First Semester CORE – 04 PHYSICS Course Code: MPHC 1.41 (Statistical Mechanics)

Total Mark: 70 Time: 3 hours Pass Mark: 28

2

Answer five questions, taking one from each unit.

UNIT-I

1.	(a) What do you mean by phase space? How will you divide the phase				
	space into cells?	1+2=3			
	(b) Differentiate between microstate and macrostate. How does				
	probability depend upon the number of microstates?	5			
	(c) Find the values of v_x for which the probability falls to	6			

(i)
$$\frac{1}{e}$$
 times
(ii) $\frac{1}{10}$ times, the maximum value

2. (a) Show that the probability function is given by

$$P(v) = 4\pi \left(\frac{m}{2\pi kT}\right)^{3/2} v^2 em^{-mv^2/kT}.$$

Hence derive expressions for most probable speed, average speed and root mean square speed. 7

- (b) How does canonical ensemble differ from a microcanonical ensemble?
- (c) Derive an expression for the partition function of a canonical ensemble made up of ideal gas molecules. Use it to calculate the thermodynamical parameters like entropy, free energy, pressure and chemical potential of the ensemble.

UNIT –II

- 3. (a) Derive the Fermi-Dirac distribution formula and show that the specific heat of a strongly degenerate Fermi-Dirac gas is directly proportional to its absolute temperature. Discuss the importance of this result. 10
 - (b) Explain the quantum statistics of identical particles and the postulate of equal a priori probability in quantum statistics. 4
- 4. (a) Show that the mean energy of free-electron at absolute zero is $\frac{3}{5}$

times that of Fermi energy at absolute zero.

(b) Calculate on the basis of Fermi-Dirac statistics the electronic contribution to the specific heat of a metal like silver. How has the specific heat been verified experimentally?
8

6

UNIT-III

5.	5. (a) Discuss the drawbacks in deriving the Einstein specific hea for solids. What was Debye's approach in this matter? Der			
			bye's formula for specific heat of solids.	3+2+3=8
	(b)	Ca	culate the critical temperature at which Bose-Einstein	
		cor	ndensation will start.	6
6.	(a)	(i)	Calculate Einstein's frequency for copper for which	
			$\Theta_E = 230K$. Given $h = 6.6 \times 10^{-34}$ joule-sec; Boltzma constant $k = 1.37 \times 10^{-23}$ joule/K.	nn's
		(ii)	Use result (i) to show that the classical theory result C	$T_{v} = 3R$
			should be valid for copper if $T > 230^{\circ}$ C.	6
	(b)	Wł	nat is black body radiation? Show that Planck's law red	luces to
		We	in's law for shorter wavelengths and Rayleigh-Jean's la	w for
		lon	ger wavelengths.	1+4=5
	(c)	Giv	ve Einstein's assumptions to explain the variation of the s	specific
		hea	t of solids with temperature.	3

UNIT-IV

7.	(a)	What do you mean by electrical noise? Derive the relation for the				
		spectral density $G(\omega)$ in the frequency range ω and $\omega + \Delta$	ω of the			
		fluctuating voltage with resistance (R) of a metal at a given				
		temperature.	1+5=6			

- (b) Explain Brownian motion. Discuss Langevin's theory of translational Brownian motion. 8
- 8. (a) Explain the Fokker Planck equation representing the motion due to a fluctuating force.
 - (b) Derive Einstein's expression for the diffusion coefficient

 $D = \frac{RT}{N} \cdot \frac{1}{6\pi\eta r}$. How will you determine N with the help of

6

Brownian movement in gases.

UNIT-V

9.	(a)	What are the two factors taken into account to derive the Van der	
		Waals equation?	2
	(b)	Derive Van der Waals equation of state and find the thermodynamic	;
		coordinates of critical point.	8
	(c)	What do you mean by first order and second order phase	
		transitions? Give a clear distinction between them.	4
10.	(a)	Explain Ising model. Give a brief account of one-dimensional Ising	
		model.	6
	(b)	Discuss the Landau theory of phase transitions.	8