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PHYSICS

Course Code: MPHC 1.31
(Mathematical Physics)

Total Mark: 70                     Pass Mark: 28
Time: 3 hours

Answer five questions, taking one from each unit.

UNIT–I

1. (a) Prove the Fourier integral theorem. 6
(b) Find the Fourier transform of:
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2. (a) Find the Fourier transform of the function:
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(b) Using Parseval’s identity, show that 
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(c) Use Fourier sine transform to solve the equation: 
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the conditions u(0, t) = 0, u (x, 0) = e–x, u(x, t) is bounded. 8
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UNIT–II

3. (a) Find the Laplace transform of sin at
t

. 2

(b) Obtain the inverse Laplace transform of  2
1

( 2) ( 2)s s+ −
. 4

(c) Using the Laplace transform, find the current i(t) in LC circuit.
Assume L = 1 H and C = 1 F under the condition:
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4. (a) Find the inverse Laplace transform of 2
1
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(b) Evaluate 
0

at bte e
t

− −∞ −
  dt. 4

(c) An inductor of 3 henry is in series with a resistance of  30 ohms and
an emf of 150 volts. Assume that the current is zero at t = 0, find the
current for time t > 0. 8

UNIT–III

5. (a) Show that the metric tensor gij is a covariant symmetric tensor of
rank two. 4

(b) Write a short note on the following: 2×2=4
(i) Covariant tensor
(ii) Contravariant tensor

(c) Prove that an anti-symmetric tensor Aij has ( 1)
2
n n − independent

components. 6

6. (a) Explain inner product of tensors with an example involving the
process. 6

(b) Prove that the Christoffel symbols are not tensor quantity. 8
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UNIT–IV

7. (a) Express f(x) = 1 + x – x2 in terms of Legendre polynomials. 4

(b) Prove that 
2
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. 4

(c) Using the descending power series of '' 2 ' 2 0y xy ny− + = , arrive at
the Hermite’s polynomial. 6

8. (a) Write the trigonometric expansion involving Bessel functions from its
generating function. 4

(b) Prove that 1 1' ' (2 1)n n nP P n P+ −− = + . 4
(c) Derive Neumann function using the equation

2 2 2'' ' ( ) 0x y xy x n y+ + − = . 6

UNIT–V

9. (a) Find the centre of G = {e, a, b, ab}. 4
(b) Let ,G< ∗ >  and ', (mod 3)G< >  be two groups where

2{1, , }G = ω ω  and ' {0,1, 2}G = . Show that 'G G≅ . 5
(c) Write the symmetry operations involving point groups. 5

10. (a) Explain proper and improper rotation with examples. 4
(b) Find all the generators of the cyclic group {a, a2, a3, a4 = e}. 4
(c) Discuss the consequences of great orthogonality theorem. 6
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