2023 M.Sc. **First Semester** CORE - 02PHYSICS Course Code: MPHC 1.11 (Quantum Mechanics - I)

Total Mark: 70 Time: 3 hours

Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

- 1. (a) Write the Schrödinger equations for a particle. What is the physical significance of the wave function? Explain the interpretation by Born.
 - 5

(b) Normalize the wave function $\psi_1 = A_1 e^{-\alpha x^2}$ and $\psi_2 = A_2 x e^{-\alpha x^2}$ in the interval $-\infty \le x \le \infty$. Are the wave function orthogonal in this interval. 4 5

- (c) State and prove the Ehrenfest's second theorem.
- 2. (a) Obtain the energy eigen value and eigen function of one dimensional harmonic oscillator using analytical method. 8
 - (b) Show that the normalized wave function associated with a Gaussian

wave packet is
$$\Psi = \left(\frac{2a^2}{\pi}\right)^{\frac{1}{4}} e^{-\alpha^2 x^2}$$
 6

UNIT-II

3.	(a)	Define delta function potential. Show that the delta function potentia	1
		has only one bound state.	8
	(b)	Explain Hilbert space and Dirac notation.	6

(b) Explain Hilbert space and Dirac notation.

- 4. (a) Prove that the eigen functions of a Hermitian operator corresponding to different eigen values are orthogonal.
 - (b) Obtain the Heisenberg uncertainty principle using Hermitian operator.

7

(c) Using mathematical induction, show that $\begin{bmatrix} x^n, p \end{bmatrix} = i\hbar nx^{n-1}$. 3

UNIT-III

5.	(a)	Derive the expression for the coherent state of linear harmonic	
		oscillator.	7
	(b)	What is the azimuthal component of the Schrödinger equation? Solv	<i>'e</i>
		this equation and find the normalized eigen functions.	7
6.	(a)	Solve the Schrödinger equation for the radial wave function and find	1
		the allowed energies of the electron in the hydrogen atom.	8
	(b)	What are spherical harmonics? Express their values for the ground	
		state of the hydrogen atom.	2
	(c)	Show that the commutator of position coordinate and the	
		corresponding momentum operator is non-vanishing and has eigen	
		value <i>i</i> ħ.	4

UNIT-IV

7.	(a)	Explain the concept of parity. Show that eigen values of parity
		operators are $+1$ and -1 . 7
	(b)	Describe Stern-Gerlach experiment. How does it explain the space
		quantization and electron spin? 7
8.	(a)	Derive the relation between total magnetic moment and total angular
		momentum. 7
	(b)	Obtain the Clebsch-Gordan coefficient for a system having $j_1 = \frac{1}{2}$

and
$$j_2 = \frac{1}{2}$$
. 7

UNIT-V

9.	(a)	Explain exchange forces between two identical particles.	7
	(b)	For a symmetric wave function, two particles can simultaneously	
		exist in the same quantum state, while for an anti-symmetric wave	
		function, two particles cannot be in the same quantum state. Justify	
		the statement with examples.	7
10.	(a)	Write a short note on positronium hydrogen. Show that the	
		positronium energy is half of the hydrogen atom.	7
	(b)	Draw the energy level diagram for para and ortho helium.	2
	(c)	Explain Hund's three rules with examples.	5