6

2

2023

M.Sc.

Third Semester

DISCIPLINE SPECIFIC ELECTIVE - 02

MATHEMATICS

Course Code: MMAD 3.21 (Tensor Analysis & Riemannian Geometry)

Total Mark: 70 Pass Mark: 28

Time: 3 hours

Answer five questions, taking one from each unit.

UNIT-I

(a) Prove that the transformation of contravariant vector, covariant

vector and mixed tensors posses the group property.

- (b) State and prove the quotient law of tensors. 4
 (c) If A^{ij} is contravariant tensor and B_i is covariant vector then show that A^{ij}B_k is a tensor of rank three, but A^{ij}B_j is a tensor of rank one. 4
 2. (a) Define symmetric and anti symmetric tensors, find the number of independent components of those two tensors and prove that for
- independent components of these two tensors and prove that for symmetric tensor symmetric property remains unchanged by tensor law of transformation.
 - (b) Show that Kronecker delta is a mixed tensor of rank two by using quotient law of tensors also show that it is invariant. Prove that if the components of a tensor vanishes in one coordinate system, they vanish identically in all coordinate system.
 - (c) Show that there is no distinction between contravariant and covariant vectors when we restrict ourselves to transformation of the type $x'^a = a^\alpha_\beta x^\beta + b^\alpha$ where a's and b's are constants such that

$$\sum_{\alpha=1}^{3} a_{\beta}^{\alpha} a_{\gamma}^{\alpha} = \delta_{\gamma}^{\alpha}.$$

(d) Prove that $A_{ij}B^iC^j$ is invariant if B^i and C^j are vectors and A_{ij} is a tensor.

UNIT-II

3.	(a)	Show that:	5
		(i) g_{ij} is a second rank covariant tensor and	
		(ii) $g_{ij}^{ij} dx^i dx^j$ is an invariant	
	(b)	Show that the angle between the contravariant vectors is real when	
		the Riemannian metric is positive definite. And find the condition that	t
		two vectors A^i and B^j be orthogonal.	4
	(c)	Find the metric of a Euclidean space referred to spherical co-	
		ordinates.	5
4.	(a)	Define <i>n</i> -ply of orthogonal system of hypersurfaces and prove the necessary and sufficient condition for the existence of an <i>n</i> -ply orthogonal system of co-ordinate hypersurfaces is that fundamental	
		form must be of the form $ds^2 = \sum_{i=1}^n g_{ij} (dx^i)^2$.	5
	(b)	Prove that the inclination θ of two vectors has the same value	
		whether they are regarded as vectors in V_n , or as vectors in	
			4
	(c)	Discuss in detail the principal directions for a symmetric covariant	
		tensor of second kind.	5
		UNIT-III	
5.	(a)	Show that Christoffel's symbols are not tensor quantities.	5
	(b)	Obtain the covariant derivative of contravariant vector.	4
	(c)	Show that metric tensors are covariant constant with respect to	
		Christoffel's symbols.	5
6.	(a)	Prove that the laws of transformations of Christoffel's symbols	
		possess the group properties.	4
	(b)	Obtain the covariant derivative of A^{ij} .	6
	(c)	Show that if A^{ij} is a symmetric tensor, then	
		$A_{i,j}^{j} = \frac{1}{\sqrt{g}} \frac{\partial}{\partial x^{j}} \left(A_{i}^{j} \sqrt{g} \right) - \frac{1}{2} A^{jk} \frac{\partial g_{jk}}{\partial x^{i}}.$	4

UNIT-IV

- 7. (a) Define geodesic and find the differential equation of it in a V_n , using the property that it is a path of maximum (or minimum) length joining two points on it.
 - (b) Show that it is always possible to choose a geodesic co-ordinate system of any V_n with an arbitrary pole P_0 . And prove the necessary and sufficient condition that the hypersurfaces $\phi = \text{constant}$ form a system of parallels is that $(\nabla \phi)^2 = 1$. 3+3=6
 - (c) Prove that every Riemannian co-ordinate system is necessarily a geodesic co-ordinate system, but the converse is not true.
- 8. (a) Discuss the Levi-Cita's concept of parallelism of vectors.
 - (b) If two vectors of constant magnitudes undergo parallel displacements along a given curve, then show that they are inclined at a constant angle. Also, prove that geodesics are the auto-parallel curve.

3+1=4

(c) State and prove the fundamental theorem of Riemannian geometry. 5

UNIT-V

- 9. (a) Obtain an expression for Riemannian-Christoffel tensor of second kind and show that it can contracted in two ways-one of these leads to a zero tensor and other to a symmetric tensor.

 4+4=8
 - (b) Prove the necessary and sufficient condition that the congruence $\boldsymbol{e}_{n|}$ of an orthonormal ennuple to be normal is that

$$\gamma_{npq} = \gamma_{nqp} (p, q = 1, 2, ..., n-1).$$

- 10. (a) Define curvature of congruence and obtain necessary and sufficient conditions that a congruence be a geodesic congruence.
 - (b) Show the necessary and sufficient condition for a Riemannian $V_n(n > 3)$ to be of constant Riemannian curvature is that the Weyl tensor vanishes identically throughout V_n .
 - (c) Prove that if $R_i^a = g^{aj}R_{ij}$, then $R_{i,a}^a = \frac{1}{2}\frac{\partial R}{\partial x^i}$ and deduce that when n > 2 the scalar curvature of an Einstein space is constant.