2023 M.Sc. Third Semester CORE – 10 MATHEMATICS Course Code: MMAC 3.21 (Topology)

Total Mark: 70 Time: 3 hours Pass Mark: 28

4

Answer five questions, taking one from each unit.

UNIT-I

- 1. (a) Show that if (X, τ) be a topological space and $Y \subseteq X$, then the collection $\tau_Y = \{Y \cap M : M \in \tau\}$ is a subspace topology on Y. 5
 - (b) If (X, τ) and be a topological space; $A, B \subseteq X$ then show that

(i)
$$(A \cap B)' \subseteq A' \cap B'$$

- (ii) $\overline{(A \cup B)} \subseteq \overline{A} \cup \overline{B}$ $2^{\frac{1}{2}+2\frac{1}{2}=5}$
- (c) Let *X* be a nonempty set. Let τ and τ ' be two topologies on *X*, then
 - (i) Is $\tau \cup \tau'$ a topology?
 - (ii) Is $\tau \cap \tau'$ a topology? 2+2=4
- 2. (a) Let (X, τ) be a topological space and $A \subseteq X$ then show that A is closed if and only if $A' \subseteq A$ 5
 - (b) Let B and B' be bases for the topologies τ and τ' respectively, on X.

Then prove that the following statements are equivalent

- (i) τ ' is finer than τ
- (ii) For each $x \in X$ and each basis $B \in \mathcal{B}$ containing x, there is a basis element $B' \in \mathcal{B}'$ such that $x \in B' \subseteq B$. 5

(c) Let
$$(X, \tau)$$
 be a topological space and $A \subseteq X$ then show that
 $\overline{A} = A^{\circ} \cup bd(A)$

UNIT-II

3.	(a)	Let (X, τ) and (Y, τ') be two topological spaces. Prove that the	
		function $f: X \to Y$ is continuous if and only each open set V in τ	',
		$f^{-1}(V)$ an open set in τ .	5
	(b)	State the pasting lemma. Give an elaboration of the lemma with an example. $1+4=$	=5
	(c)	Show that $P = [a, b]$ is homeomorphic to $Q = [c, d]; P, Q$ are	
		subspace of \mathbb{R} with the standard topology.	4
4.	(a)	Let (X, τ) and (Y, τ') be two topological spaces. Prove that	
		$f: X \to Y$ is continuous if and only if $f(\overline{A}) \subseteq \overline{f(A)}$ for every subset A and X.	5
	(b)	Homeomorphism forms an equivalence class on the class of all topological spaces. Justify.	5
	(c)	Let (X, τ) and (Y, τ') be two topological spaces. Prove that $f: X \to Y$ is open if and only if $f(A^\circ) \subseteq (f(A))^\circ$.	4

UNIT-III

 (c) If A ⊆ ℝ is connected, then A is an interval. Justify. (a) If E is a connected subset of a topological space (X, τ), then sho that F ⊆ X such that E ⊆ F ⊆ Ē is connected. (b) Prove that a topological space (X, τ) is locally connected if and on if components of each open subset of X are open. 	5.	(a) If E is a connected subset of a disconnected topological space	
 (b) A connected topological space may not be path connected. Justify (c) If A ⊆ ℝ is connected, then A is an interval. Justify. 6. (a) If E is a connected subset of a topological space (X, τ), then sho that F ⊆ X such that E ⊆ F ⊆ Ē is connected. (b) Prove that a topological space (X, τ) is locally connected if and on if components of each open subset of X are open. 		(X, τ) , the sets A and B form a separation of E, then show that	
 (c) If A ⊆ ℝ is connected, then A is an interval. Justify. (a) If E is a connected subset of a topological space (X, τ), then sho that F ⊆ X such that E ⊆ F ⊆ Ē is connected. (b) Prove that a topological space (X, τ) is locally connected if and on if components of each open subset of X are open. 		either $E \subseteq A$ or $E \subseteq B$.	5
 6. (a) If E is a connected subset of a topological space (X, τ), then sho that F ⊆ X such that E ⊆ F ⊆ E is connected. (b) Prove that a topological space (X, τ) is locally connected if and on if components of each open subset of X are open. 		(b) A connected topological space may not be path connected. Justify.	5
 that F ⊆ X such that E ⊆ F ⊆ E is connected. (b) Prove that a topological space (X, τ) is locally connected if and on if components of each open subset of X are open. 		(c) If $A \subseteq \mathbb{R}$ is connected, then A is an interval. Justify.	1
(b) Prove that a topological space (X, τ) is locally connected if and or if components of each open subset of <i>X</i> are open.	6.	(a) If <i>E</i> is a connected subset of a topological space (X, τ) , then show	
if components of each open subset of X are open.		that $F \subseteq X$ such that $E \subseteq F \subseteq \overline{E}$ is connected.	5
(c) Is a product of path connected spaces necessarily path connected		(b) Prove that a topological space (X, τ) is locally connected if and only if components of each open subset of <i>X</i> are open.	, 5
		(c) Is a product of path connected spaces necessarily path connected?	
			1

UNIT-IV

7.	(a)	Prove that the continuous image of a compact topological space is	
		compact.	5
	(b)	Prove that $[0, 1]$ is a compact subset of \mathbb{R} with the standard topology.	5
	(c)	A subspace of a locally compact topological space is not locally compact. Justify.	4
8.	(a)	Let (X, τ) be a topological space. Then, prove that X is compact i and only if for every collection C of closed sets in X satisfy the finite intersection property.	f 6
	(b)	Let (Y, τ') be a one-point compactification of a locally compact Hausdorff topological space (X, τ) . Then, prove that (Y, τ') is Hausdorff.	4
	(c)	A compact set in a topological space is not necessarily closed. Justify.	4
		τινιτά χ	

UNIT-V

9.	(a)	Prove that every compact Hausdorff space is normal.	5
	(b)	A subspace of a first countable space is first countable. Justify.	5
	(c)	The space (\mathbb{R}, τ_{std}) is a T_3 -space. Justify.	4
10.	(a)	Prove that every second countable space is first countable. Is the converse of the statement true?	5
	(b)	A metrizable space is a normal space. Justify.	5
	(c)	The closed image of a T_1 -space is a T_1 - space. Justify.	4