2023 M.Sc. **First Semester** CORE - 04MATHEMATICS Course Code: MMAC 1.41 (Abstract Algebra)

Total Mark: 70 Time: 3 hours

Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a)	Prove that in any group, an element and its inverse have the same	
		order.	5
	(b)	Prove that the union of two subgroups of a group G is a subgroup o	f
	. ,		5
	(c)	Prove that the order of a cyclic group is equal to the order of its	
		generator.	4
2.	(a)	State and prove the fundamental theorem of group homomorphism.	
			5
	(b)	Prove that a subgroup N of a group G is a normal subgroup of G if	
		and only if every left coset of N in G is also a right coset of N in G.	5
	(c)	Show that every permutation of a finite set can be expressed as a	
		• •	4
		UNIT–II	
3.	(a)	Explain group action by conjugation.	4
	• •		6
		If G is a finite group, show that G is a p-group if and only if order of	f
	(-)		4
		*	-
4.	(a)	State and prove Sylow's first theorem.	7
	(b)	Prove that the dihedral group D_n has $2n$ elements.	7

UNIT-III

5.	 (a) Show that no group of order 30 is simple. (b) Show that the relation of conjugacy is an equivalence relation. (c) If G₁ and G₂ are two groups, show that G₁×G₂ is abelian if and 	4 5
	only if both G_1 and G_2 are abelian.	5
6.	(a) Find all the conjugate classes in S_4 and verify the class equation. (b) How many abelian groups (up to isomorphism) are there of order	7
	15?	4
	(c) What is the smallest positive integer n such that there are two nonisomorphic groups of order n ? Name the two groups. $2+1$	=3

UNIT-IV

7.	(a)	Define characteristic of a ring and show that the characteristic of an integral domain is either zero or a prime.	5				
	(b)	Prove that the sum of two ideals of a ring R is also an ideal of R containing both the ideals.	6				
	(c)	Prove that the only homomorphisms from the ring of integers $\mathbb Z$ to are the identity and the zero mappings.	Z 3				
8.	(a)	Show that $\mathbb{R}[x]/\langle x^2+1\rangle$ is a field.	4				
		Prove that every Euclidean domain is a PID.	5				
		Show that in a UFD an element is prime if and only if it is irreducibl	e.				
			5				
	UNIT-V						
9.	(a)	If F is a field, prove that $F[x]$ is a PID.	5				
	(b)	Prove that any polynomial which is reducible over rational numbers	,				
		is reducible over integers.	5				
	(c)	State and prove the factor theorem.	4				
10.	(a)	State and prove Eisenstein's criterion for irreducibility.	5				
	(b)	Show that the polynomial $x^2 + x + 2$ is irreducible in $\mathbb{Z}_3[x]$ and us	e				
		it to construct a field of 9 elements.	5				
	(c)	Show that the polynomial $x^{p-1} + x^{p-2} + + x + 1$ is irreducible over					
		Q.	4				