2023

M.Sc. First Semester CORE – 02 MATHEMATICS Course Code: MMAC 1.21 (Linear Algebra)

Total Mark: 70 Time: 3 hours Pass Mark: 28

5

Answer five questions, taking one from each unit.

UNIT-I

- 1. (a) Let *V* be a vector space over a field *F*. Show that a non-empty subset *W* of *V* is a subspace of *V* if and only if, for each pair of vectors $\alpha, \beta \in W$ and each scalar *c* in *F*, the vector $c\alpha + \beta$ is again in *W*. 5
 - (b) Show that the span of a list of vectors in V is the smallest subspace of V containing all the vectors in the list.
 - (c) Suppose that $T \in \mathcal{L}(V, W)$ is injective and $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ is linearly independent in *V*. Prove that $\{T(\alpha_1), T(\alpha_2), ..., T(\alpha_n)\}$ is linearly independent in *W*.
- 2. (a) If V is a vector space over a field F, show that the zero vector in V and the additive inverse of a vector in V are both unique. 5
 - (b) Let *V* and *W* be vector spaces over the field *F* and let *T* be a linear transformation form *V* into *W*. Suppose *V* is finite-dimensional, then prove that rank(T) + nullity(T) = dim(V). 5
 - (c) Suppose *V* is a finite-dimensional vector space over the field *F* and *S*, $T \in \mathcal{L}(V)$. Prove that ST = I if and only if TS = I.

UNIT-II

3. (a) Suppose *V* is finite dimensional vector space over the field *F*, $T \in \mathcal{L}(V)$ and $c \in F$. Prove that *c* is a characteristic value of *T* if and only if (T-cI) is not invertible.

- (b) If *A* is an $n \times n$ matrix, then prove that there exists a non-singular matrix *P* such that $P^{-l}AP$ is an upper triangular matrix with the characteristic values on the diagonal.
- (c) Show that matrices $A = \begin{bmatrix} -1 & 3 & 0 \\ 0 & 2 & 0 \\ 2 & 1 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & 2 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ are similar matrices over \mathbb{C} .

5

5

5

- 4. (a) Let *V* be a finite dimensional vector space over the field *F* and let $T \in \mathcal{L}(V)$. Prove that *T* satisfies at least one polynomial of positive degree over *F*. 5
 - (b) Let *T* be a linear operator on an *n*-dimensional vector space *V*.Prove that the characteristic and minimal polynomials for *T* have the same roots, except for multiplicities.

UNIT-III

5. (a) Let *T* be a linear operator on \mathbb{R}^3 which is represented in the standard ordered basis by the matrix $A = \begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & 4 \end{bmatrix}$. Prove that *T* is diagonalizable by exhibiting a basis for \mathbb{R}^3 , each vector of

which is a characteristic vector of T.

- (b) If V is a finite dimensional vector space and $W_1, W_2, ..., W_k$ are subspaces of V. Let $W = W_1 + W_2 + ... + W_k$, then show that the following are equivalent:
 - (i) W_1, W_2, \dots, W_k are independent
 - (ii) For each $j, 2 \le j \le k, W_j \cap (W_1 + ... + W_{j-1}) = \{0\}$

- (iii) If \mathcal{B}_i is an ordered basis for W_i , $1 \le i \le k$ then the sequence $\mathcal{B} = \{\mathcal{B}_1, \dots, \mathcal{B}_k\}$ is an ordered basis for W.
- (c) Let *E* be a projection on *V* and $T \in \mathcal{L}$. Prove that both range and the null space of E are invariant under T if and only if TE = ET. 4
- 6. (a) Let $T \in \mathcal{L}(V)$. Suppose c_1, c_2, \dots, c_m are distinct characteristic values of T and $\alpha_1, \alpha_2, ..., \alpha_m$ are corresponding characteristic vectors. Prove that $\alpha_1, \alpha_2, ..., \alpha_m$ are linearly independent. 5
 - (b) If $V = W_1 \oplus W_2 \oplus ... \oplus W_k$, then prove that there exist k linear operators $E_{l}, E_{2}, ..., E_{k}$ on V such that 5
 - (i) each E_i is a projection
 - (ii) $E_i E_i = 0$ if $i \neq j$
 - (iii) $I = E_1 + E_2 + \dots + E_k$
 - (iv) the range of E_i is W_i

$$\begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

to Jordan canonical form. (c) Reduce the matrix A =4 0 1 3

UNIT-IV

- 7. (a) Suppose α and β are two vectors in an inner product space V, then show that $|\langle \alpha, \beta \rangle| \le ||\alpha|| ||\beta||$. Under what conditions is the inequality an equality? 5
 - (b) If *V* is an inner product space, prove that $T \in \mathcal{L}(V)$ is normal if and only if $||T(\alpha)|| = ||T^*(\alpha)||$ for all $\alpha \in V$. 5
 - (c) Suppose $c_1, c_2, ..., c_n$ are scalars with absolute value 1 and $S \in \mathcal{L}(V)$ satisfies $S(e_i) = c_i e_i$ for some orthonormal basis e_1, e_2, \dots, e_n of V. Show that S is an isometry. 4
- 8. (a) Suppose U is a finite-dimensional subspace of an inner product space V, then prove that $U = (U^{\perp})^{\perp}$.
 - (b) Suppose V is an inner product space and $T \in \mathcal{L}(V)$ is Hermitian. Prove that characteristic vectors of T corresponding to distinct characteristic values are orthogonal.

5

5

(c) Prove that if V is a complex inner product space, then

$$\left\langle \alpha, \beta \right\rangle = \frac{\left\| \alpha + \beta \right\|^{2} - \left\| \alpha - \beta \right\|^{2}}{4} + \frac{\left\| \alpha + i\beta \right\|^{2} - \left\| \alpha - i\beta \right\|^{2}}{4}i$$

for all $\alpha, \beta \in V$.

UNIT-V

9. (a) Prove that the mapping
$$B: \mathcal{P}_3(\mathbb{R}) \times \mathcal{P}_3(\mathbb{R}) \to \mathbb{R}$$
 defined by

$$B(p,q) = \int_0^1 p(x)q(x)dx$$
 is a bilinear form on $\mathcal{P}_3(V)$. Write the

matrix of *B* with respect to the standard basis of $\mathcal{P}_3(\mathbb{R})$.

- (b) Let V be a finite-dimensional vector space over a field of characteristic zero, and let B be a symmetric bilinear form on V. Prove that there is an ordered basis for V in which B is represented by a diagonal matrix.
 5
- (c) Let *f* be the form on \mathbb{R}^2 defined by $f((x_1, y_1), (x_2, y_2)) = x_1y_1 + x_2y_2$. Find the matrix of *f* with respect to the basis {(1, 2), (3, 4)}. 4
- 10. (a) Let *V* be a vector space over the field *F* of characteristic $\neq 2$. Then prove that the mapping $f : B \to Q$, where $Q(x) = B(x, x), x \in V$, from the set of symmetric bilinear forms on *V* into the set of quadratic forms on *V* is a 1 – 1 correspondence. 5
 - (b) Let V be a complex vector space and H a form on V such that $H(\alpha, \alpha)$ is real for every $\alpha \in V$. Prove that H is hermitian. 5

(c) Let $A = \begin{bmatrix} -2 & 3 & 5 \\ 3 & 1 & -1 \\ 5 & -1 & 4 \end{bmatrix}$. Show that there exists an invertible matrix

P such that $P^{t}AP$ is diagonal.

4

4

5