2023 M.Sc. First Semester CORE – 01 MATHEMATICS Course Code: MMAC 1.11 (Ordinary Differential Equations)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

- 1. (a) Consider the equation $y'' + a_1 y' + a_2 y = 0$, where a_1, a_2 are real. Suppose $\alpha + i\beta$ is a complex root of the characteristic polynomial, where α, β are real, $\beta \neq 0$. Then show that
 - (i) $\alpha i\beta$ is also a root
 - (ii) any solution ϕ may be written in the form

 $\phi(x) = e^{\alpha x} (d_1 \cos \beta x + d_2 \sin \beta x) \text{ where } d_1, d_2 \text{ are constants.}$ Find the value of α, β . 3+3+2=8

- (b) Let *I* be the interval 0 < x < 1. Find a function ϕ which has a continuous derivative on $-\infty < x < \infty$, which satisfies y'' = 0 in *I* and $y'' + k^2 y = 0$ outside *I*, (k > 0), and which has the form $\phi(x) = e^{ikx} + Ae^{-ikx}$, $(x \le 0)$ and $\phi(x) = Be^{ikx}$, $(x \ge 1)$. Determine ϕ by computing the constants *A*, *B* and its value in *I*. 6
- 2. (a) Let ϕ_n be any function satisfying the boundary value problem $y'' + n^2 y = 0$, $y(0) = y(2\pi)$, $y'(0) = y'(2\pi)$, (n = 0, 1, 2, ...) then show that $\int_{0}^{2\pi} \phi_n(x)\phi_m(x) = 0$ if $n \neq m$.
 - (b) Suppose ϕ_1, ϕ_2 are linearly independent solutions of the constant coefficient equation $y'' + a_1 y' + a_2 y = 0$, show that $W(\phi_1, \phi_2)$ is a constant if and only if $a_1 = 0$.

(c) Let $L(y) = y'' + a_1 y' + a_2 y$ where a_1, a_2 are constants, and let the characteristic polynomial be $p(r) = r^2 + a_1 r + a_2$. Now if A, α are constants and $p(\alpha) \neq 0$, show that there is a solution ϕ of $L(y) = Ae^{\alpha x}$ of the form $Be^{\alpha x}$ where B is a constant and compute the particular solution of $L(y) = Ae^{\alpha x}$ if $p(\alpha) = 0$. 2+4=6

UNIT-II

- 3. (a) Prove that there exits *n* linearly independent solution of L(y) = 0 on *I*. 4
 - (b) Consider the equation $y'' + \frac{1}{x}y' \frac{1}{x^2}y = 0$ for x > 0, then
 - (i) show that there is a solution of the form x^r , where r is a constant
 - (ii) find the two solutions ϕ_1, ϕ_2 satisfying $\phi_1(1) = 1, \phi_2(1) = 0$; $\phi'_1(1) = 1, \phi'_2(1) = 1.$ 4
 - (c) Consider the equation $y'' + \alpha(x)y = 0$, where α is a real valued continuous function for $0 < x < \infty$. Now, if $\alpha(x) \ge \varepsilon$ for $0 < x < \infty$, where ε is a positive constant, show that every real valued solution has an infinity of zeros on $0 < x < \infty$.
- 4. (a) Let $\phi_1, ..., \phi_n$ be *n* linearly independent solution of L(y) = 0 on an interval *I*. If ϕ is any solution of L(y) on *I* it can be represented in the form $\phi = c_1\phi_1 + ... + c_n\phi_n$, where $c_1, ..., c_n$ are *n* constants. Then prove that any set of *n* linearly independent solutions of L(y) = 0 on *I* is a basis for the solution of L(y) = 0 on *I*. 4
 - (b) Consider the equation y "+ α(x) y = 0 where a is a continuous function on -∞ < x < ∞ which is of period ξ > 0 and let φ₁, φ₂ be the basis for the solutions satisfying φ₁(0) = 1, φ₂(0) = 0;

$$\phi'_1(0) = 1, \phi'_2(0) = 1$$
, then show that

- (i) there is at least one non trivial solution ϕ of the period ξ if and only if $\phi_1(\xi) + \phi_2(\xi) = 2$. 3
- (ii) there exist a one non trivial solution ϕ satisfying $\phi(x+\xi) = -\phi(x)$ if and only if $\phi_1(\xi) + \phi_2(\xi) = -2$.

(c) Let ϕ, ψ be two real valued linearly independent solutions of $y'' + \alpha(x)y = 0$ on a < x < b, where α is a real valued. Show that between any two successive zeros of ϕ there is a zero of ψ . 3

UNIT-III

- 5. (a) One solution of $x^2y'' xy' + y = 0$, (x > 0) is $\phi_1(x) = x$. Find the solution ψ of $x^2y'' xy' + y = x^2$, satisfying $\psi(1) = 1$, $\psi'(1) = 0$. 6
 - (b) Find two linearly independent power series solution of the equation L(y) = y'' xy = 0. And show that the solutions are convergent. 8
- 6. (a) Find two linearly independent power series solution (in powers of x) of y'' xy' + y = 0.
 - (b) The equation $y'' + e^x y = 0$ has a solution of the form

$$\phi(x) = \sum_{k=0}^{\infty} c_k x^k \text{ which satisfies } \phi(0) = 1, \ \phi'(0) = 1. \text{ Compute } c_0, c_1, \\ c_2, c_3, c_4, c_5.$$

5

(c) Show that
$$\int_{-1}^{1} P_n(x)P_m(x)dx = 0, (n \neq m)$$
 where P_n is the n^{th}
Legendre polynomial.

UNIT-IV

7. (a) Solve the equation
$$y' = \frac{1}{2} \left(\frac{x+y-1}{x+2} \right)^2$$
 3

(b) Find an integrating factor for each of the following equations and solve them

(i)
$$(2y^2+2)dx+3xy^2dy=0$$
 3

(ii)
$$(5x^2y^2 + 2y)dx + (3x^4y + 2x)dy = 0$$
 4

(c) Consider the equation M(x, y)dx + N(x, y)dy = 0, where M, N have continuous first partial derivatives on some rectangle R. Prove that the function u on R, having continuous first partial derivatives, is

an integrating factor if and only if
$$u\left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}\right) = N \frac{\partial u}{\partial x} - M \frac{\partial u}{\partial y}$$

on *R*.

- 8. (a) For each of the following problems compute the first four successive approximation: $3 \times 3=9$
 - (i) $y' = x^2 + y^2$, y(0) = 0(ii) y' = 1 + xy, y(0) = 1(iii) $y' = y^2$, y(0) = 1
 - (b) Consider the equation $y' = (3x^2 + 1)\cos^2 y + (x^2 2x)\sin 2y$ on the strip $s_a : |x| \le a$ (a > 0). If f(x, y) denotes the right side of this equation, show that f(x, y) satisfies a Lipschitz condition on this strip, and hence show that every initial value problem y' = f(x, y), $y(x_0) = y_0$, has a solution which exit for all real x. 5

UNIT-V

- 9. (a) Find all the solutions of the following equations for |x| > 0
 - (i) $x^2y''+xy'+4y=1$ $4\times 2=8$

(ii)
$$x^2 y'' + xy' - 4\pi y = x$$

- (b) Let $L(y) = x^2 y'' + axy' + by$ where *a*, *b* are constants, and let *q* be the indicial polynomial q(r) = r(r-1) + ar + b. Then
 - (i) Show that the equation $L(y) = x^k$ has a solution ψ of the form $\psi(x) = cx^k$ if $q(k) \neq 0$.
 - (ii) Suppose *k* is a root of *q* of multiplicity one. Show that there is a solution ψ of $L(y) = x^k$ of the form $\psi(x) = cx^k \log x$. 3

4

10. (a) Find the solution near x = 0 of $x^2 y'' + (x + x^2) y' + (x - 9) y = 0$. 10

(b) If J_n denotes the Bessel's function of first kind, then prove that $J_{-n}(x) = (-1)^n J_n(x)$.