2023 M.Sc. Third Semester CORE – 09 CHEMISTRY Course Code: MCHC 3.11

(Inorganic Chemistry - III)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a)	Explain with examples showing that complexes involving bridging sulphato group exhibits more bands.	6
	(b)	NH ₃ stretching frequencies of complexes are lower than those of th	.e
		free NH ₃ molecule. Comment.	5
	(c)	Mention the M–OH bending mode of $[Sn(OH)_6]^{2-}$ complex ion.	3
2.	(a)	Show with an example that CN ⁻ stretching frequencies gets shifted	to
		a higher value on coordination.	5
	(b)	What are the different types of vibration exhibited by aquo	
		complexes? Explain with examples.	5
	(c)	Explain the positive shifts and negative shifts of thiocyanato	
		complexes.	4

UNIT-II

3.	(a) Explain the principle of ESR spectroscopy.	4
	(b) How many ESR hyperfine lines are present in the following	
	complexes?	3×2=6
	(i) $\left[Cu (H_2 O)_6 \right]^{2+}$	
	(ii) trans - $\left[Cr(H_2O)_4 (NH_3)_2 \right]^{2+}$	

[Given, Cu(I=3/2), Cr(I=5/2), N(I=1), H(I=1/2)]

	(c)	State and explain Drago's rule by taking an example.	2+2=4
4.	(a)	Explain the principle of NMR spectroscopy.	4
	(b)	Calculate ¹⁹ F NMR signals found in the following.	3×2=6
		(i) SF_4	
		(ii) ClF ₃	
		(iii) ClF ₅	
		[Given, F(I=1/2)]	
	(c)	Calculate fine lines and hyperfine lines of Mn^{2+} (HS) octahed	dral.

UNIT-III

4

5.	(a)	Explain the basic principles of mass spectrometry.	4
	(b)	Discuss how to determined the molecular formula and isotop	e peaks
		by using mass spectroscopy.	6
	(c)	Write any four applications of ESI.	4
6.	(a)	What is meant by base peak? Explain the types of ions produ	aced in
		mass spectrometer with suitable examples.	1+4=5
	(b)	Explain nitrogen rule.	4
	(c)	Discuss the working principles of MALDIMS.	5

UNIT-IV

7.	(a) Give an account on isomer shift and its interpretation.	5
	(b) Explain the quadrupole interaction of Mossbauer spectroscopy b	у
	taking Fe-57 as an example.	5
	c) How would you obtain the Mossbauer spectrum? Explain.	4
8.	(a) Discuss the principle of Mossbauer spectroscopy.	5
	(b) Discuss the effect of magnetic field on Mossbauer spectra.	5
	(c) Explain the Mossbauer spectroscopy applications in: $2 \times$	2=4
	(i) Chemical shift and bond nature.	
	(\mathbf{i}) \mathbf{P}_{i-1} \mathbf{i}_{i-1} \mathbf{i}_{i-1}	

(ii) Biological systems.

[Given, Mn(I=5/2)]

UNIT-V

9.	(a)	Write notes on lattice planes and indices.	4
	(b)	Draw the stereographic projection of the point group 422, 4/m, 32	
	()	and mm2.	4
	(c)	Explain the symmetry elements present in the space group triclinic	
		$P\overline{1}$ by giving the necessary diagrams.	6
10	. (a)	Give an account on the d-spacing formulae and systematically abser reflections from the X-ray diffraction of crystals. 2+2=	
	(b)	Draw the diagrams of the following screw axes 2_1 , 3_1 and 3_2 and	
		explain the different symbols present in it. $2 \times 3 =$	6
	(c)	Differentiate between point groups and space groups.	4