2023 M.Sc. First Semester CORE – 04 CHEMISTRY Course Code: MCHC 1.41

(Physical Chemistry - II)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a) Write short note on the following:	2×2=4
	(i) Activity coefficient	
	(ii) Ion-ion interaction	
	(b) Explain the effect of ion on the structure of water.	5
	(c) Determine the mean ionic activity coefficient by solvent vapou	r
	pressure method.	5
2.	(a) What do you mean by mean ionic activity coefficient? Explain	. 4
	(b) What is solvation number? Explain the solvation number taking	g
	examples.	5
	(c) How will you determine the mean ionic activity coefficient by a	cell
	concentration method?	5

UNIT-II

3.	(a) What is ion-solvent interaction? Explain the free energy change		
		to ion-solvent interaction.	2+3=5
	(b)	Derive the expression for the Butler-Volmer equation for the k	inetics
		of the electrode reaction.	5
	(c)	Explain the electrochemical mechanism of the nervous system	. 4
4.	(a)	Write a note on the following:	3×2=6
		(i) Overvoltage	
		(ii) Polorography	

(b)	Explain the Helmholtz-Perrin model of electrical double layer.	5
(c)	Discuss the diffusion overpotential using Nernst model.	3

(c) Discuss the diffusion overpotential using Nernst model.

UNIT-III

5.	(a)	What do you understand by diffusion coefficient? Explain.	5
	(b)	Define mean free path. Derive the relationship between diffusion	
		coefficient and mean free path. 1+	4=5
	(c)	Derive the expression of Nernst-Einstein equation for diffusion	
		coefficient and equivalent conductivity.	4
6.	(a)	Write a note on mobility of ions.	3
	(b)	State and explain the Ficks first law of steady state diffusion.	5
	(c)	Derive the Einstein relation between absolute mobility of ions and	1
		diffusion coefficient.	6

UNIT-IV

7.	(a)	Explain in detail the generalized forces and fluxes of entropy	
		production.	4
	(b)	Write a note on Onsager reciprocity relation.	4
	(c)	Deduce the expression for the entropy production due to	
		electrochemical reaction.	6
8.	(a)	Explain the Clausius inequality for the irreversible process.	4
	(b)	Discuss the states of minimum entropy production in a non-	
		equilibrium state.	5
	(c)	What do you understand by entropy flow in an open system?	
		Explain.	5

UNIT-V

9.	(a) Write short note on the following:	2×2=4
	(i) Grand canonical ensemble	
	(ii) Microcanonical ensemble	
) Derive the expression for the molecular rotational partition function of	
	an ideal gas.	4
	(c) Derive the statistical expression for equilibrium constant.	6

10. (a) Explain the Fermi-Dirac statistics.	6
(b) Discuss the Debye theory of heat capacities of solid.	5
(c) Derive the expression for the internal energy in terms of partition	
function.	3