2023 M.Sc. First Semester CORE – 03 CHEMISTRY Course Code: MCHC 1.31 (Physical Chemistry - I)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a)	What is a Hermitian operator? Prove that if the eigenfunction of a Hermitian operator has different eigenvalues, then they are	
		orthogonal.	4
	~ ~	State and explain the third postulate of quantum mechanics. Solve the wave equation of hydrogen atom using Schrödinger	3
		equation.	7
2.	~ ^	Discuss the uncertainty principle. What are orthogonal and normalised wave function? Write the	4
		properties of well-behaved wave function.	4
	(c)	Derive an expression of a harmonic oscillator using quantum	
		mechanics.	6

UNIT-II

3.	(a) Discuss the valence bond treatment of H_2 .	6
	(b) Explain in detail the anti-symmetry principle.	6
	(c) What is Born-Oppenheimer approximation?	2
4.	(a) Give the application of variation method.	4
	(b) Construct the wavefunctions for the sp ² hybrid orbitals.	3
	(c) Discuss the MO treatment of the hydrogen molecule.	5
	(d) Write the secular determinant for ethylene using Huckel MOT.	2

UNIT-III

5.	(a) What are the factors that contribute to the strength of hydrophob	oic
	interaction?	4
	(b) Explain the process of wetting using Young-Dupre equation.	3
	(c) Give the derivation of BET equation.	7
6.	(a) Explain the thermodynamic parameters of micellization.	4
	(b) Derive an expression for Gibbs adsorption isotherm.	5
	(c) What is Kelvin equation? Explain.	2
	(d) What are surfactants? Give their classification.	3
	UNIT-IV	
7.	(a) Find the Miller indices of	4

(i) the sets of planes intersecting the axes represented by labels

$$\left(\frac{4}{3},\frac{3}{2},\infty\right)$$
 and $\left(-2,1,\infty\right)$.

(ii) The planes that intersects the crystallographic axes at the

distance (6a, 4b, 2c) and $(3a, \infty b, \infty c)$.

(b) Discuss the Kroger-Vink notation for crystal defects. Give examples.

6

5

1

	(c)	Write a note on p-n junction.	4
8.	(a)	What are colour centres? How do they arise?	4
	(b)	With the help of a neat diagram explain the extrinsic semiconductor	s.

(c) What are the different types of defects? Explain point defect in detail.

(d) Define the Bragg's law.

UNIT-V

9. (a) The rotational spectrum of HCl molecules shows that the rotational lines are equally separated by 20.70 cm⁻¹. Calculate the internuclear bond length.

(b)	Write Morse equation for the energy of the vibrational levels of the anharmonic oscillator. Compare the potential energy curves of the	
	anharmonic oscillator with the harmonic oscillator.	5
(c)	Discuss the vibrational spectra of diatomic molecules.	5
10. (a)	Which factors governs the intensities of rotational spectral in a rigid	
	diatomic rotator? Illustrate using appropriate curves.	6
(b)	What are Stokes and anti-Stokes lines? Explain.	3
(c)	Write a note on interaction of light with matter.	3
(d)	What is selection rule? Give the selection rule for pure rotational	
	spectra.	2