2023 M.Sc. **First Semester** CORE - 01CHEMISTRY Course Code: MCHC 1.11 (Inorganic Chemistry - I)

Total Mark: 70 Time: 3 hours

Pass Mark: 28

5

Answer five questions, taking one from each unit.

UNIT_I

- 1. (a) What is symmetry elements? Discuss the symmetry elements present in water molecule with suitable diagrams. 1+4=5
 - (b) Explain with examples how you would differentiate between $C \approx v$ and $D \approx v$. 2+2=4
 - (c) Give the multiplication table of point group C_{3y} and mention whether it is abelian or non-abelian. 5
- 2. (a) Systemmatically explain the symmetry elements and operations present in tetrahedral geometry with the help of diagrams.
 - (b) Draw the structures of the following coordination compounds and assign their point group: 2+2=4
 - (i) $[Fe(CO)_5]$ (ii) [TaF.]
 - (c) What are reducible and irreducible representations? Discuss how to carry out similarly transformation of the diagonal elements to form 5 block factorised.

UNIT-II

- 3. (a) Draw the molecular orbital diagram for NO⁻ anion and mention the magnetic character. 4 4
 - (b) What are the factors affecting stability of metal complexes?

- (c) Write short notes on the following:
 - (i) Walsh diagram
 - (ii) Polarity of bonds
- 4. (a) Draw the molecular orbital diagram for NO⁺ cation and mention the magnetic character.
 - (b) What do you mean by chelate effect? Discuss the trends in stepwise formation constants. 1+3=4
 - 3+3=6(c) Write short notes on the following:
 - (i) Dipole moment
 - (ii) Inner and outer orbital complexes.

UNIT-III

- 5. (a) What are microstates? Calculate the total number of microstates for electronic configuration
 - (i) d^4 (ii) p^2 $1+1\frac{1}{2}+1\frac{1}{2}=4$ (b) Find out the possible term symbol of electronic configuration: $3 \times 2=6$ (i) d^7 (ii) d^3 (c) Write short notes on the following: $2 \times 2 = 4$
 - (i) Diamagnetism (ii) Paramagnetism
- 6. (a) Explain the determination of magnetic susceptibility using Gouy's method. Give its advantages and disadvantages. 3+2+2=7(b) Discuss temperature independent paramagnetism. 3 4
 - (c) Find out the ground state term for Ni^{2+} .

UNIT-IV

- (a) Determine the magnetic nature of the following by applying CFT: 7.
 - (ii) $[Co(CN)_{6}]^{3-}$ $1\frac{1}{2}+1\frac{1}{2}=3$ (i) $[CoF_{6}]^{3-}$
 - (b) Explain the below complexes as having no, weak and strong Jahn Teller distortion : $2 \times 3 = 6$
 - (i) $[Fe(CN)_{6}]^{4-}$ (ii) $[Fe(CN)_6]^{3-1}$
 - (iii) $[CrF_{\epsilon}]^{4-}$

- (c) What is spin cross over? Mention the conditions required to have spin cross over.
- (d) Calculate CFSE of the following:
 - (i) Mn^{2+} (octahedral LS)
 - (ii) Cr^{2+} (octahedral HS) $1\frac{1}{2}+1\frac{1}{2}=3$

2

2

6

8. (a) Calculate g (gyromagnetic ratio) of the following:
$$3 \times 2=6$$

(i) $\text{Er}^{3+}(Z = 68)$ (ii) $\text{Pm}^{3+}(Z = 61)$

- (b) Name two lanthanide metal ions showing high magnetic moment values.
- (c) Compare octahedral and tetrahedral complexes by taking their CFSE values and plot a graph.

UNIT-V

9.	(a)	Write down the split states of an octahedral and tetrahedral fie S, P, D and F free ion state.	d of 4
	(b)	What are Orgel diagrams? Draw the Orgel diagram for a d^2 at metal ion in an octahedtral field and mention the expected band	
			2+5=7
	(c)	What is nephelauxetic series?	3
10.	(a)	What is adjusted crystal field theory? Discuss the evidences sho presence of covalent bonding in complexes.	owing 2+5=7
	(b)	Three bands are expected in an octahedral $[V(H_2O)_6]^{3+}$ comp	olex
		but only two bands are observed. Give reasons.	4
	(c)	Give reasons why transitions are forbidden in octahedral	
	. /	d^5 complexes.	3