2023

B.A./B.Sc. Third Semester GENERIC ELECTIVE – 3 **STATISTICS**

Course Code: STG 3.11 (Basics of Statistical Inference)

Total Mark: 70 Time: 3 hours Pass Mark: 28

2

Answer five questions, taking one from each unit.

UNIT-I

- 1. (a) Define any three of the following:
 1×3=3

 (i) Parameter
 (ii) Statistic
 (iii) Estimator

 (iv) Estimate
 (v) P-value
 - (b) Prove that if T_n is a consistent estimator of $\gamma(\theta)$ and $\psi\{\gamma(\theta)\}$ is a continuous function of $\gamma(\theta)$, then $\psi(T_n)$ is a consistent estimator of $\psi\{\gamma(\theta)\}$.
 - (c) A random sample $(X_1, X_2, X_3, X_4, X_5)$ of size 5 is drawn from a normal population with unknown mean μ . Consider the following estimators to estimate μ :

(i)
$$t_1 = \frac{X_1 + X_2 + X_3 + X_4 + X_5}{5}$$

(ii) $t_2 = \frac{X_1 + X_2}{2} + X_3$
(iii) $t_3 = \frac{2X_1 + X_2 + \lambda X_3}{3}$

Where λ is such that is an unbiased estimator of μ ? Find λ . Are t_1 and t_2 unbiased? State giving reasons, the estimator which is best among t_1 , t_2 , and t_3 .

2. (a) What is a minimum variance unbiased estimator?

- (b) Define a sufficiency estimator. Let $x_1, x_2, ..., x_n$ be a random sample from $N(\mu, \sigma^2)$ population. Find sufficient estimators for μ and σ^2 . 2+4=6
- (c) If T_1 and T_2 are two unbiased estimator of $\gamma(\theta)$, having the same variance and ρ is the correlation between them, then show that $\rho \ge 2e 1$, where *e* is the efficiency of each estimator. 6

UNIT-II

- 3. (a) Out of the two types of error in testing the more severe error is 1 (i) type-I error (ii) type-II error (iii) no error is severe (iv) both (i) and (ii)
 - (b) Define the null and alternative hypothesis with one example each. 4
 - (c) Explain the two types of errors and show the four possible situations that arise in any test procedure relating to decision and hypothesis. 4
 - (d) Given the frequency function:

$$f(x,\theta) = \begin{cases} \frac{1}{\theta} & , 0 \le x \le \theta \\ 0 & , elsewhere \end{cases}$$

and that you are testing the null hypothesis $H_0: \theta = 1$ against

 $H_1: \theta = 2$, by means of a single observed value of x. What would be the sizes of the type-I and type-II errors, if you choose the interval (i) $0.5 \le x$, (ii) $1 \le x \le 1.5$ as the critical regions? Also obtain the power function of the test.

5

4. (a) Size of the critical region is known as (i) power of the test (ii) size of type-II error (iii) critical value of the test statistics (iv) size of the test (b) Discuss Neyman-Pearson lemma for the best critical region. 7 (c) If $x \ge 1$ is the critical region for testing $H_0: \theta = 2$ against the alternative $\theta = 1$, on the basis of the single observation from the population, $f(x, \theta) = \theta \exp(-\theta x), 0 \le x \le \infty$. Obtain the values of type-I and the power function of the test. 6

UNIT-III

5. (a) Student's *t*-test was invented by 1 (i) R.A. Fisher (ii) W.S. Gosset (ii) W.G. Cochran (iv) G.W. Snedecor (b) Describe how χ^2 -test may be used to test the independence of attributes. 7 (c) Explain *F*-test for testing the equality of two population variances. 6 6. (a) Degrees of freedom for statistic- χ^2 in case of contingency table of order (2×2) is 1 (i) 3 (ii) 4 (iv) 1 (iii) 2 (b) A sample of 900 members has a mean 3.4 cms and standard deviation 2.61 cms is the sample from a large population of mean 3.25 cms and standard deviation 2.61 cms? If the population is normal and is unknown, find the 95% and 98% fiducial limits of true mean. (Table value 95% = 1.96, 98% = 2.33) 6 (c) Define student's t-distribution. Write down the applications of *t*-distribution stating its assumptions. 2+5=7

UNIT-IV

- 7. (a) Which one of the following is not true for probability sampling? 1
 - (i) Each unit has an equal chance of being selected.
 - (ii) The sample is selected with a definite purpose in view.
 - (iii) Sampling units have different probabilities of being selected.
 - (iv) A sampling unit may be assigned the probability of selection in proportional to its size.

6

6

- (b) Describe the basic principles of sample survey.
- (c) Define SRSWOR. Show that in simple random sampling without replacement, the sample mean square is an unbiased estimate of the population mean square i.e. $E(s^2) = S^2$. 2+5=7

8. (a) The sample of all possible samples of size 2 from a population of 4 units is 1

- (i) 2 (ii) 4 (iii) 6 (iv) 8
- (b) Write a notes on sampling error and non-sampling error.

(c) Define simple random sampling. Show that in simple random sampling without replacement $V(\bar{x}_n)$ is given by

$$V(\overline{x}_n) = \frac{N-n}{N} \cdot \frac{S^2}{n} \cdot 2+5=7$$

UNIT-V

9.	(a)	Define analysis of variance (ANOVA). Also give the classified data	l
		for one way ANOVA along with ANOVA table for testing of	
		hypothesis. 1+2+2	=5
	(b)	In design of experiment define the following terms: $2 \times 2^{\pm}$	=4
		(i) Treatment (ii) Plot	
	(c) Define randomized block design (RBD). Also give the statistic		
		analysis of RBD. 1+4-	=5
10.	(a)	Explain in details various principles involved in design of	
		experiment.	6
	(b)	Give the statistical analysis of two way ANOVA and obtain the	
		parameters by applying principles of least squares.	5
	(c)	Give the lay out of completely randomized block design (CRD).	3