2023

B.A./B.Sc. Fifth Semester DISCIPLINE SPECIFIC ELECTIVE – 1 **STATISTICS** *Course Code: STD 5.11*

(Operations Research)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

- 1. (a) What do you mean by operations research? Describe the main phases of operations research. 2+6=8
 - (b) Solve the following linear programming problem (LPP) by graphical method: 6

Max. $Z = 5x_1 + 8x_2$ Subject to constraints $3x_1 + 2x_2 \le 36$

 $x_1 + 2x_2 \le 20$

and $x_1, x_2 \ge 0$

- 2. (a) What do you mean by modelling in operations research? Explain the various models in operations research. 2+6=8
 - (b) Solve the following linear programming problem (LPP) by graphical method: 6

Max. $Z = 3x_1 + 5x_2$ Subject to constraints $x_1 + 2x_2 \le 2000$ $x_1 + x_2 \le 1500$ $x_2 \le 500$ and $x_1, x_2 \ge 0$

UNIT-II

3.	(a)	Define transportation problem. What is the difference between	
		balanced and unbalanced transportation problem? 1+2	=3
	(b)	Describe the Vogel's approximation method of obtaining feasible	
		solution to transportation problem.	4
	(c)	Explain in detail the steps for solving stepping stone method for	
		obtaining feasible solution.	4
	(d)	Prove the necessary and sufficient condition for existence of feasible	le
		solution in a transportation problem.	3
4.	(a)	With usual notation define assignment problem and give its	
		mathematical formulation. 1+3	=4
	(b)	Describe the north-west corner rule method of obtaining feasible	
		solution.	3
	(c)	Explain the steps involved in Hungarian assignment method.	4
	(d)	Prove that the number of basic variables in transportation at any	
		stage must be $(m+n-1)$.	3

UNIT-III

5.	(a)	Write down the characteristics of game theory.	4
	(b)	Describe the method for solving a 2×2 game without a saddle point	t.

6

 $2 \times 2 = 4$

7

(c) Solve the following game whose payoff matrix is given as follows: 4

	Player B		
Player A	10	7	
	8	9	

- 6. (a) Define the following:
 - (i) Competitive game and its properties
 - (ii) Strategies of a game
 - (b) Show that a game can be formulated as a linear programming problem (LPP).

(c) Solve the following game with saddle point.

	Player B					
		Ι	II	III	IV	V
Player A	Ι	0	2	2	7	5
	II	5	4	3	4	4
	III	-2	-1	2	0	8
	IV	7	5	-2	4	-4

UNIT-IV

7.	(a)	a) Write briefly about direct inventory and indirect inventory.			
		the five types of inventory models?	2+5=7		
	(b)	ory			
		management?	4		
	(c)	Write a note on ABC analysis.	3		
8.	· · /	What is inventory problem? Why is inventory maintained?	2+3=5		

(b) Write briefly about the economic lot size system with uniform demand in the EOQ model without shortage. Describe the algebraic method for determining the optimum inventory cost for this model.

2+4=6 3

(c) Write a note on VED analysis.

UNIT-V

9. (a)		Briefly write about programme evaluation and review technique	
		(PERT) and critical path method (CPM). Write down the basic step	ps
		for writing a network. $2+2+3=$	=7
	(b)	Draw the diagrams of bar chart and milestone chart.	3
	(c)	Differentiate between PERT and CPM.	4
10.	(a)	Illustrate the basic rules while drawing a network.	6
	(b)	Write a note on different time estimates in PERT. What probability	
		distribution is closely associated with these three time estimates?	
		3+1=	=4
	(c)	What are the D.R. Fulkerson's rule for numbering of events in	
		PERT?	4