2023

B.A./B.Sc.

Fifth Semester

CORE – 11

STATISTICS

Course Code: STC 5.11 (Stochastic Processes & Queuing Theory)

Total Mark: 70 Time: 3 hours Pass Mark: 28

5

2+3=5

Answer five questions, taking one from each unit.

UNIT-I

- 1. (a) Define probability generating function (p.g.f.) and express mean and variance in terms of p.g.f. 2+4=6
 - (b) Let *Y* have the distribution of geometric form given by,

$$P_r(Y=k) = g^{k-1} \cdot p; k = 1, 2, 3, \dots$$

Show that the p.g.f. of Y is
$$\frac{ps}{1-qs}$$
 and $E(Y) = \frac{1}{p}$ and

$$Var(Y) = \frac{q}{p^2}$$

(c) If P(s) is the p.g.f. of X, find the p.g.f. of $\frac{x-m}{n}$, where m and n are any arbitrary constants. 3

2. (a) Define the following:

- (i) Bivariate probability generating function
- (ii) Stochastic process with example
- (b) Suppose X be a Poisson variate with probability generating function $P(x) = \lambda^{2}(x-1)$

$$P(s) = e^{\lambda(s-1)}$$
, then find $p'_k s$; where $k = 1, 2, 3, ...$ 6

(c) Write a note on specification of stochastic process. 3

UNIT-II

- 3. (a) Define the following: $2 \times 2 = 4$ (i) Markov chain (ii) Transition matrix (b) State and prove first entrance theorem. 2+4=6(c) For the given Markov chain having transition probability matrix $\begin{pmatrix} 1-a & a \\ b & 1-b \end{pmatrix}$, derive for the generalization of independent Bernoulli 4 trials. 4. (a) For a higher transition probability, state and prove Chapman-Kolmogorov equation. 7 $1\frac{1}{2} \times 2 = 3$ (b) Define the following: (i) Stability of Markov chain
 - (ii) Transient and Persistent state
 - (c) Define graph theoretic approach and write the formula for $\{V_k\}$. 4

UNIT-III

5. (a) Write down the three postulates of Poisson process. With usual notation show that under these postulates, number of occurrences N(t) follows Poisson probability law. 3+7=10

- (b) What is pure death process? Write down the three axioms of pure death process. 1+3=4
- 6. (a) Show that if M(t) is the number of occurrences recorded in an

interval of length t, from a Poisson process $\{N(t), t \ge 0\}$, then M(t) is also a Poisson process with parameter λpt , where λt is the parameter of N(t).

8

(b) State and prove Yule-Furry process.

UNIT-IV

- (a) Define a queueing system. What are the different behaviours of customers in a queueing system? Define traffic intensity. 2+2+2=6
 - (b) State and prove the theorem for distribution of arrival in a queueing system. 8

8.	(a)	Show that in a queueing system the number of departures in time t	
		follows the truncated Poisson distribution.	8
	(b)	Obtain the two steady state difference equations for	
		model 1: $(M M 1)$: (∞ FCFS), i.e., birth and death model.	6

UNIT-V

- 9. (a) Explain the income and price elasticities of demand of a commodity. Discuss the general principles regarding the elasticity of demand.
 - 6+4=10(b) Let the demand curve for a commodity be d = a - bp and the supply curve be s = cp - d, where a, b, c and d are positive constants. Find the equilibrium price and the quality exchanged. 4 2

 $4 \times 3 = 12$

- 10. (a) State Pareto's law of income distribution.
 - (b) Write notes on the following:
 - (i) Utility function
 - (ii) Curves of concentration in demand analysis
 - (iii) Engel's law