2023 B.A./B.Sc. Third Semester CORE – 7 STATISTICS Course Code: STC 3.31 (Mathematical Analysis)

Total Mark: 70 Time: 3 hours Pass Mark: 28

5 2

Answer five questions, taking one from each unit.

UNIT-I

1. (a) Represent $\sqrt{9.3}$ on a number line. 3 (b) Find the supremum and infimum of the set, if they exist. $2\frac{1}{2} \times 2=5$

(i)
$$S_n = \left\{ (-1)^n \cdot \frac{1}{n} : n \in N \right\}$$

(ii) $S_n = \left\{ \frac{4n+3}{n} : n \in N \right\}$

- (c) Define limit point of a sequence. Prove that every point of [0, 1] is a limit point of (0, 1).
- 2. (a) Prove that a point *P* is a limit point of a set *S* if and only if every neighbourhood of *P* contains infinitely many points of *S*.
 - (b) Show that the set $[3,4] \cup [5,6]$ is a closed set.
 - (c) Show whether the given sequence is convergent, divergent or oscillatory.

$$\left\langle a_{n}\right\rangle = \left\langle (-1)^{n} + \frac{1}{2^{n}}\right\rangle$$

$$2$$

(d) Define neighbourhood of a point. Prove that any open interval]a, b[is a neighbourhood of each of its point. 2+3=5

UNIT-II

3.	(a) (b)	State and prove D'Alembert ratio test. Test the convergence of the series whose n^{th} term is				
		$\left[\sqrt{(n^4+1)} - \sqrt{(n^4-1)}\right].$	3			
	(c)	Test the convergence of the series $\sum \left[\frac{\log n}{\log(n+1)}\right]^{n^2\log n}$	3			
	(d)	Show that the series $1 + \frac{1}{2!} + \frac{1}{3!} + \dots$ is convergent.	2			
4.	(a) (b)	State comparison test. Apply Cauchy's condensation test to discuss the convergence	2 of the			
		series $\sum_{n=2}^{\infty} \frac{1}{(n \log n)(\log \log n)^p}$.	3			
	(c)	Test the convergence of the series				
		$\frac{1}{x} - \frac{1}{x+a} + \frac{1}{x+2a} + \dots, x > 0, a > 0.$	3			
	(d)	Define the following:	2×2=4			
		(i) Absolute convergence				
	(-)	(ii) Conditional convergence				
	(e)	Use Cauchy's integral lest to lest the convergence of				
		$1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots$	2			
		UNIT-III				
5.	(a) Show whether the given function exists at					
		$f(x) = \begin{cases} 5x - 4, & 0 < x \le 1\\ 4x^3 - 3x, & 1 < x < 2 \end{cases} \text{ at } x = 1.$	4			
	<i>a</i> >					

(b) Define Rolle's mean value theorem and show its geometrical interpretation. Verify the Rolle's theorem for the function for

$$f(x) = x^2 - 3x + 2 \text{ on } [1, 2]. \qquad 3+4=7$$

- (c) Find the expansion of $\sin x$.
- 6. (a) Verify Lagrange's value theorem for $f(x) = x + \frac{1}{x}$ on [1,3] 4
 - (b) Show whether the function $f(x) = \frac{1}{x}, x \in (b, \infty), b > 0, x, y \in \mathbb{R}$ and

$$|x-y| < \delta$$
, is uniformly continuous or not. 3

- (c) Expand $e^x \cos x$ in power of x by Maclaurin's theorem.
- (d) Examine the function for continuity at the origin

$$f(x) = \begin{cases} \frac{4x^2 - 1}{2x + 1}, & \text{if } x \neq \frac{-1}{2} \\ -2, & f x = \frac{-1}{2} \end{cases}.$$
4

UNIT-IV

- 7. (a) Define operator Δ . Evaluate $\Delta^2(x^2+1)$. 1+3=4
 - (b) State and prove Newton's divided difference interpolation formula.

5

(c) Given

<i>x</i> :	0	1	4	6
f(x):	2	6	30	56
01			- 6 07	1 T

Obtain the value of f(3) by Lagrange's interpolation formula. 5

8. (a) Estimate the missing entries in the table

<i>x</i> :	1	2	3	4	5
f(x):	7		13		37

- (b) State and prove Gauss's backward central difference formula. 5
- (c) State Newton forward interpolation formula. Using this formula find *f(x)* from the following data *f(0) = 8, f(2) = 11, f(4) = 20, f(6) = 41.*

3

UNIT-V

9.	(a) (b)	State and prove Weddle's rule of numerical integration. Obtain the approximate quadrature formula	5
		$\int_{1}^{-1} U_{x} dx = \frac{1}{12} [13(U_{1} + U_{-1}) - (U_{3} + U_{-3})]$	5
	(c)	Fill in the blank:	1
		(i) The iterative method $x = g(x)$ is if $ g'(x) < 1$.	
	(d)	Show that the following rearrangement equation	
		$x^{3} + 6x^{2} + 10x - 20 = 0$, does not yield a convergent sequence of successive approximation by iteration method near $x = 1$.	3
10.	(a)	In trapezoidal rule, what is the degree of polynomial for $f(x)$? Deriv Simpson's one third rule for numerical integration $1+5=$	e -6
	(h)	Simpson some-unit rule formula for numerical integration. $1+5-$ Find the reciprocal of 41 correct to 4 decimal places by iterative	-0
	(0)	formula $r = r(2 - 41r)$	4
	(c)	Explain Regula-Falsi method of finding the real roots of the equation	י 1
	()	f(x) = 0.4.	4
		• • •	