2023 B.A./B.Sc. Third Semester CORE – 5 STATISTICS Course Code: STC 3.11 (Sampling Distributions)

Total Mark: 70 Time: 3 hours

Answer five questions, taking one from each unit.

UNIT-I

- (a) Define the following: 2×2=4
 (i) Convergence in probability
 (ii) Convergence in mean square
 (b) State and prove De-Moivre Laplace theorem. 7
 - (c) Let X_n be a sequence of random variables such that

$$X_{n}(x) = \begin{cases} \left(1 - \frac{1}{n}\right)^{nx}; & x > 0\\ 0; & \text{otherwise} \end{cases}$$

Show that X_n converges is distribution to exponential.

2. (a) Define the following:

(i) Almost sure convergence (ii) Convergence in distribution

(b) Let X be a discrete random variable with support $R_{\chi} = [0, 1]$ and the p.m.f is

$$P_{x}(x) = \begin{cases} \frac{1}{3}, & \text{if } x = 1\\ \frac{2}{3}, & \text{if } x = 0\\ 0, & \text{otherwise} \end{cases}$$

Prove that $\{X_n\}$ coverges in probability to X i.e. $X_n \xrightarrow{P} X = 6$

Pass Mark: 28

3 2×2=4 (c) Examine whether WLLN holds good for the sequence $\{X_n\}$ of

independent random variables where $P\left(X_n = \frac{1}{\sqrt{n}}\right) = \frac{2}{3}$,

$$P\left(X_n = \frac{-1}{\sqrt{n}}\right) = \frac{1}{3}.$$
State Liapunov central limit theorem.

(d) State Liapunov central limit theorem.

UNIT-II

3.	(a)	Define order statistics. Derive the cumulative distribution function of r^{th} order statistics.	f 5
	(b)	Derive the distribution of range, i.e., $X_{(n)} - X_{(I)}$ drawn from a population with probability density function $f(x)$.	4
	(c)	Derive the sample median which is drawn from a population with p.d.f. $f(x)$, when sample median is odd or even.	5
4.	(a)	For joint probability density function of two order statistics, prove	
		that $f_{rs}(x, y) = F_{rs}(X_{(r)}, X_{(s)})$.	6
	(b)	Derive the probability density function (p.d.f.) and cumulative distribution function (c.d.f.) of first order statistics, i.e., $f_1(x)$ and	
		$F_1(x)$.	4
	(c)	If $X \sim U(0,\theta)$ and $(X_1, X_2,, X_n)$ be a random sample drawn from uniform distribution. Find the density function of the smallest	
		and largest/highest order statistics.	4
		UNIT–III	
5.	(a)	A wrong decision about H_0 leads to:	1
		(i) one kind of error	
		(ii) two kinds of error	
		(iii) three kinds of error	
	<i>a</i> \	(iv) none of the above	-
		Define level of significance and P-value. 1+1=	
	(c)	In two large populations, there are 30 and 25 per cent respectively	
		of blue-eyed people. Is this difference likely to be hidden in sample	_
		of 1200 and 900 respectively from the two populations?	5

(d) Prove that S^2 is an unbiased estimate of the population variance σ^2 .

6

1

4

7

4

- 6. (a) Testing of hypothesis $H_0: \mu = 10$ vs $H_1: \mu > 10$ leads to
 - (i) one-sided left-tailed test
 - (ii) one-sided right-tailed test
 - (iii) two-tailed test
 - (iv) all the above
 - (b) Define one-tailed and two-tailed test. $1\frac{1}{2}+1\frac{1}{2}=3$
 - (c) A cigarette manufacturing firm claims that brand A of its cigarettes outsells its brand B by 8%. If it is found that 42 out of a sample of 200 smokers prefer brand A and 18 out of another random sample of 100 smokers prefer brand B, test whether the 8% difference is a valid claim. (Use 5% level of significance).
 - (d) Describe the test of significance for the difference of standard deviation.

UNIT-IV

7.	(a)	Define chi-square distribution. Derive its distribution by the method		
		of MGF. 2+8=1	10	
	(b)	Discuss the properties of chi-square distribution.	4	
8.	(a)	Discuss the nature of p.d.f. curve for different degrees of freedom.	6	

(b) Obtain the m.g.f. of chi-square distribution and estimate the mean and variance.

UNIT-V

9. (a) Give the definition of Fisher's t-distribution and obtain its distribution. 2+6=8
 (b) Obtain the graph of t-distribution. 6

10. (a) If
$$\rho = 0$$
, then show that $t = \frac{r}{\sqrt{1-r^2}}\sqrt{(n-2)}$ is distributed as student's-t with $(n-2)$ d.f.

(b) Obtain the mode and points of inflexion of *F* distribution.

(c) In $F(n_1, n_2)$ distribution, if we let $n_2 \rightarrow \infty$, then show that $\chi^2 = n_1 F$ follows χ^2 -distribution with n_1 d.f.

3