2023

B.A./B.Sc. Fifth Semester DISCIPLINE SPECIFIC ELECTIVE – 1 PHYSICS

Course Code: PHD 5.11 (Classical Dynamics)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a) Define constraint. Write four types of constraints. 1+2	2=3
	(b) Formulate the generalised coordinates to show that the Jacobian	
	determinant should be different from zero at all points for a	
	transformation from a set of coordinates to another set of	
	coordinates.	4
	(c) Derive the Lagrange equation of motion.	7
2.	(a) Evaluate the Lagrangian of a charged particle under the influence gyroscopic force and show that a force acting on the particle is	ofa
	derivable from a potential dependent on velocity.	8
	(b) Apply the Lagrange equation to evaluate the time period of a	
	compound pendulum.	6

UNIT-II

3.	(a)	Derive the Hamilton's canonical equations of motion.	7
	(b)	Formulate the Hamiltonian of a simple pendulum and calculate its	
		time period by applying the Hamilton's equation of motion.	7
4.	(a)	Write a short note on Hamilton's variational principle.	3
	(b)	Explain the principle of least action.	3
	(c)	Apply the Hamilton's equation of motion to evaluate the time period	bd
		of a compound pendulum.	8

UNIT-III

(b) Evaluate the solution for a physical system consisting of two equal

3

5. (a) Write a short note on small oscillation.

		masses joined by identical springs to each other and to fixed walls free from friction. Formulate the concept of normal coordinates from the given system. $7+4=11$
6.		Explain stable and unstable equilibrium with necessary representations. Write two differences between them.4+2=6Evaluate the theory of small oscillation for a system consisting of two simple pendula coupled by a massless spring.8
		UNIT-IV
7.		Write two postulates of the special theory of relativity.2Formulate the Lorentz transformation equation by taking the concept of orthogonality conditions for spatial rotation.12
8.		Write a short note on space like, time like and light like interval. 5 Calculate the percentage contraction of a rod moving with a velocity 0.8 times the velocity of light in a direction inclined at 60 degrees to its own length. 3
	(c)	The half-life of a particle at rest is 17.8 nano seconds. What will be the half-life if its speed is 0.8 c?
	(d)	What is the velocity that a rocket should move so that every yearspend on it corresponds to 4 years on earth?3
		UNIT-V
9.		Evaluate relativistic Doppler's effect of light waves.Explain furtherthe blue and red shift in relativistic Doppler effect. $6+4=10$ Calculate the hydrostatic pressure due to a liquid column. 4
10.	(a)	Derive the equation of continuity for liquid.

- (b) Deduce the Poiseuille's equation for flow of a steady liquid flowing through a pipe with the help of the concept of velocity gradient.
- (c) Apply the principle of dimensional analysis to obtain an expression for Reynolds number.