2023 B.A./B.Sc. Fifth Semester CORE – 12 PHYSICS Course Code: PHC 5.21 (Solid State Physics)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

- 1. (a) The primitive translation vectors of a two dimensional lattice are
 - $\vec{a} = 2\hat{i} + \hat{j}$ and $\vec{b} = 2\hat{j}$. Calculate the primitive translation vectors of its reciprocal lattice. 6
 - (b) Using Ewald construction, prove that Bragg's diffraction condition in reciprocal lattice is equal to Bragg's diffraction condition in the direct lattice.
 - (c) Sketch $(\overline{1} \quad 0 \quad 0)$ in simple cubic cell. 2
- 2. (a) Define interplanar spacing. Derive the general expression of interplanar spacing. 1+5=6
 - (b) What is reciprocal lattice? Show that the reciprocal of the reciprocal lattice vector is a direct vector. 1+3=4
 - (c) With a neat diagram, explain the crystal structure of sodium chloride.

4

UNIT –II

- 3. (a) The angular frequency of a wave propagating inside a wave guide is given by $\omega = 2ck^2$. Find the phase and group velocity of the wave.
 - (b) Discuss the low temperature behaviour of specific heat in Debye's model. 4

(c) Derive the dispersion relation for a monoatomic lattice vibration.	6
(a) Explain, with neat diagram, the acoustic and optical branches using	

4.

the dispersion relation for a linear diatomic lattice chain. 6

(b) Why does Einstein's theory of specific heat of solids work well at high temperatures but fail at low temperatures?

UNIT-III

5.	(a) Explain Meissner effect in superconductivity. Differentiate be		
		type-I and type-II superconductors.	2+2=4
	(b)	Explain the origin of domains in ferromagnetic materials.	4
	(c)	Discuss the Langevin's quantum theory of paramagnetism.	6
6.	(a)	In an iron bar magnet of cross-section 2 mm ² , a magnetic inter	•
		1.2 Am^{-1} produces a magnetic flux of 3.2×10^{-5} weber. Calcu	ulate
		the permeability and susceptibility of the iron.	4
	(b)	₈₀ Hg ²⁰⁰ in the superconducting state has critical temperature o	of 6.2 K
		at zero magnetic field and a critical field of 0.064 MAm ⁻¹ at 0) K.
		Determine the critical field at 4 K and also, determine the trans	sition
		temperature of one of its isotopes $_{80}$ Hg ²⁰⁴ .	4
	(c)	In B-H loop, show that the energy loss is the area under the	
		B-H loop.	6

UNIT-IV

- 7. (a) Derive Lorentz relation for a local electric field in a dielectric material.
 - (b) What are plasma? Write a short note on plasma oscillations. 1+3=4

4

(c) Define dipolar polarizability. Show that dipolar polarizability per

molecule is given by
$$\alpha_d = \frac{p^2}{3k_BT}$$
 1+5=6

8. Explain normal and anomalous dispersion, clearly stating the underlying assumptions. 14

UNIT-V

9.	Dis	scuss the formation of allowed and forbidden energy bands on the	
	bas	is of the Kronig-Penney model. Give schematic representation of	
	per	iod, extended and reduced zone of E-K relationship.	14
10.	(a)	Write a note on piezoelectric effect.	4
	(b)	Calculate the Hall coefficient of sodium based on free electron	
		model. Sodium has BCC structure, and the side of the cube is 4.2	Å.
			4
	(c)	Explain Curie-Weiss law for ferroelectricity.	6