2023 B.A./B.Sc. First Semester CORE – 2 PHYSICS Course Code: PHC 1.21 (Mechanics)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1. (a) What is Galilean transformation? Obtain Galilean transforma		ion	
		equations.	1+4=5
	(b)	Prove that the law of conservation of momentum is invariant	under
		Galilean transformation.	3
	(c)	Find the net force and thrust on a rocket.	6
2.	(a)	(a) What is centre of mass? Find the velocity, acceleration, and linear	
		momentum of centre of mass. 1+2	+2+2=7
	(b)	Express conservative force as gradient of potential energy an	nd prove
		that the curl of a conservative force is zero.	4
	(c)	At what velocity will a 10,000 kg truck have	3
		(i) the same momentum	
		(ii) the same kinetic energy as a 4,000 kg car at 30 m/sec?	

UNIT-II

3. (a) Differentiate between elastic and inelastic collision and discuss perfectly inelastic collision in one dimension in laboratory frame.

1+4=5

(b) Show that torque is the time rate of change of angular momentum and prove that for a rigid body, angular momentum is constant in absence of torque.

4

(c) Find the moment of inertia of a solid cylinder about its own axis of cylindrical symmetry and about an axis through its centre and perpendicular to its axis of cylindrical symmetry.

5

- 4. (a) Find the moment of inertia of a hollow cylinder about its own axis of cylindrical symmetry and about an axis through its centre and perpendicular to its axis of cylindrical symmetry. 7
 - (b) Find the moment of inertia of a solid sphere about its diameter and about a tangent. 5
 - (c) A torque of 1 Nm is applied to a wheel of mass 10 kg and radius of gyration 50 cm. What is the resulting acceleration? 2

UNIT-III

- 5. (a) What is Coriolis force? Discuss its effects. 2+3=5
 (b) Find the gravitational potential and field due to a solid sphere at different points. 9
 6. (a) Show how a two body problem is reduced to a one body problem in physics. 3
 (b) Find the orbital speed, time period and height above the Earth's surface of satellites in circular orbit. 8
 - (c) A sphere of mass 19 kg is attracted by another sphere of mass 150 kg, when their centres are separated by a distance of 0.28 m with a force equal to the weight of 0.25 mg. Calculate the gravitational constant. If the distance is halved, what would be the new force in Newton?

UNIT-IV

- 7. (a) Prove the relation $Y = 2\eta(1+\sigma)$, where the symbols have their usual meaning in elasticity. Also show that $\frac{9}{Y} = \frac{1}{K} + \frac{3}{n}$. 5+2=7
 - (b) Derive the expression of torsional rigidity for a solid and hollow cylinder. Compare their torsional rigidities. 5+2=7

8.	(a)	Obtain the expression of total energy of a simple harmonic oscillato	r.
		Also derive the expression of maximum kinetic energy and potential	1
		energy.	8
	(b)	What is damped oscillation? Obtain the differential equation of	
		motion of a damped harmonic oscillator.	4
	(c)	State Hooke's law and define Poisson's ratio.	2

UNIT-V

9.	(a)	Describe and discuss Michelson-Morley experiment.	6
	(b)	Discuss time dilation and explain twin paradox.	4
	(c)	Show that in relativistic mechanics, addition of any velocity to the velocity of light merely reproduces the velocity of light. What	
		happens when $v \ll c$?	4
10.	(a)	Derive Einstein's mass - energy relation and state two examples	
		related to it.	6
	(b)	Define and explain relativistic Doppler's effect?	6
	(c)	State the postulates of special theory of relativity.	2