Pass Mark: 14

2023

B.A./B.Sc. **Third Semester** SKILL ENHANCEMENT COURSE - 1 MATHEMATICS Course Code: MAS 3.11

(Logic & Sets)

Total Mark: 35 Time: 2 hours

Answer five questions, taking one from each unit.

UNIT_I

- 1. (a) Let p and q be the propositions: *p*: I bought a lottery ticket this week q: I won the million dollar jackpot Express each of these propositions as an english sentence. (i) $p \rightarrow q$ (ii) $\neg p \land \neg q$ (b) For each of these sentences, determine whether "an inclusive or", or "an exclusive or", is intended. Explain your answer. $2^{1/2}+2^{1/2}=5$
 - (i) To enter the country you need a passport or a voter registration card.
 - (ii) A password must have at least three digits or be at least eight characters long.
- 2. (a) Which of the given sentences are propositions? What are the truth values of those that are propositions? 3
 - (i) x + 1 = 4
 - (ii) Kohima is the capital of Assam
 - (b) Suppose the value of $p \rightarrow q$ is T, what can be said about the value of $\neg p \land q \leftrightarrow p \lor q$. 4

1+1=2

UNIT-II

3.	(a)	Use De Morgan's laws to find the negation of each of the following: (i) John is rich and happy 2×2=4 (ii) Carlos will ride a bicycle or run tomorrow	
	(b)	Use truth tables to verify the absorption laws: $p \lor (p \land q) \equiv p$ and $p \land (p \lor q) \equiv p$	
4.		Let $F(x, y)$ be the statement "x can fool y", where the domain consists of all people in the world. Use quantifiers to express each of these statements. $2+2=4$ (i) Everybody can fool Fred (ii) Everyone can be fooled by somebody Determine the truth value of the statement $\exists n$ such that $n = -n$ if the	
	(0)	domain is the set of all integers. 3	
	UNIT-III		
5.	(a)	State true or false with proper reasons: $1+1=2$ (i) The sets {{1,2}} and {1,2} are equal (ii) { x } \in { x }	
	· /	Show that if A and B are sets with $A \subset B$ then $ A \leq B $. 2 With the aid of a Venn diagram investigate the validity of the inference:	
		If <i>A</i> , <i>B</i> and <i>C</i> are subsets of <i>U</i> such that $A \cap B \subseteq \overline{C}$ and $A \cup C \subseteq B$, then $A \cap C = \emptyset$.	
6.	(a)	For any subsets A, B and C of U , prove that 4	
	(b)	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. How many license plates can be made by using either two uppercase English letters followed by four digits or two digits followed by four uppercase letters? 3	

UNIT-IV

7. (a) Prove that two sets are equal if and only if their symmetric difference is \emptyset .

- (b) Prove that for all sets A, B and C: (A-B) - C = (A-C) - (B-C)3
- 8. (a) For any two sets A and B, prove using set identities that $A \subseteq B \Leftrightarrow A \cap B = A$ and $A \subseteq B \Leftrightarrow A \cup B = B$.
 - (b) For finite sets A and B, if |A| = |B|, then show that $|\mathcal{P}(A)| = |\mathcal{P}(B)|$.

3

5

UNIT-V

- 9. (a) If $A = \{a, b, c\}$ and $B = \{0, 1\}$. Find $B \times A$. What are the domain and range of this relation? 3
 - (b) Let *R* be a relation on the set of integers such that aRb if and only if a = b or a = -b. Prove that *R* is an equivalence relation. 4
- 10. (a) Let *R* be an equivalence relation on a set *A*. Prove that for $a, b \in A$, the following statements are equivalent:
 - (i) aRb
 - (ii) [a] = [b]
 - $(iii) [a] \cap [b] \neq \emptyset$

where [a] and [b] are the equivalence classes of a and b respectively.

(b) Let *R* be a relation from \mathbb{R} to \mathbb{R} defined by $R = \{(a, b) | b \ge 0 \text{ and } b \le a \text{ and } a + b \le 1\}$. Write this relation as an intersection of three relations. 2