2023

B.A./B.Sc. Third Semester GENERIC ELECTIVE – 3 MATHEMATICS Course Code: MAG 3.11

(Vectors & Analytical Geometry)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a)	If $\overline{r}(t)$ is a differentiable vector-valued function in 2-space or 3-	
		space and $ \overline{r}(t) $ is constant for all <i>t</i> , then prove that	
		$\overline{r}(t).\overline{r}'(t) = 0.$	3
	(b)	Calculate $\frac{d}{dt} \left[\overline{r_1}(t) \cdot \overline{r_2}(t) \right]$ and $\frac{d}{dt} \left[\overline{r_1}(t) \times \overline{r_2}(t) \right]$ where	
		$\overline{r_1}(t) = \cos t\hat{i} + \sin t\hat{j} + t\hat{k}$ and $\overline{r_2}(t) = \hat{i} + t\hat{k}$.	4
	(c)	Find the arc length parametrization of the circular helix	
		$\overline{r} = \cos t \hat{i} + \sin t \hat{j} + t \hat{k}$ that has reference point $\overline{r}(0) = (1,0,0)$	
		and the same orientation as the given helix.	3
	(d)	Use the given information to find the position vector $\overline{r}(t)$ and	
		velocity vector $\overline{v}(t)$ of the particle whose acceleration is given by	
		$\overline{a}(t) = -\cos t \hat{i} - \sin t \hat{j}; \overline{v}(0) = \hat{i}; \overline{r}(0) = \hat{j}.$	4
2.	(a)	Find curvature $\kappa(t)$ and radius of curvature $\rho(t)$ for the circular	
		helix $\overline{r}(t) = a \cos t \hat{i} + a \sin t \hat{j} + t \hat{k}$.	4
	(b)	Find $\overline{T}(t)$, $\overline{N}(t)$ and $\overline{B}(t)$ at $t = 0$ for the given vector	
		$\overline{r}(t) = e^t \hat{i} + e^t \cos t \hat{j} + e^t \sin t \hat{k} .$	5

(c) If $\phi = 2x^3y^2z^4$, find $\nabla \cdot (\nabla \phi)$.	3
(d) Determine the constant a so that the vector	

$$\overline{F} = (x+3y)\hat{i} + (y-2z)\hat{j} + (x+az)\hat{k} \text{ is solenoidal.}$$

UNIT-II

3. (a) Using the given parametrization, evaluate the line integral ∫_c(1+xy²)ds 2×2=4

(i) C: r̄(t) = tî + 2tĵ (0 ≤ t ≤ 1)

(ii) C: r̄(t) = (1-t)î + (2-2t)ĵ (0 ≤ t ≤ 1)

(b) Find the work done by the force field F̄(x, y) = xy²k + x² yĵ on a particle moving along an arbitrary smooth curve in the region from P(1, 1) to Q(0, 0). 4

(c) Verify Green's theorem for the integral $\oint_C (x^2 - y)dx + xdy$ where C is the circle $x^2 + y^2 = 4$.

(d) Evaluate the line integral $\int_{C} (3x+2y) dx + (2x-y) dy$ along the line segment from (0, 0) to (1, 1). 2

4. (a) Evaluate
$$\int_C \overline{F} d\overline{r}$$
 where $\overline{F}(x, y) = \cos x\hat{i} + \sin x\hat{j}$ and
 $C : \overline{r}(t) = t\hat{i} + t^2\hat{j} \quad (-1 \le t \le 2).$ 2

(b) Determine whether $\overline{F}(x, y) = (\cos y + y \cos x)\hat{i} + (\sin x - x \sin y)\hat{j}$ is conservative. If so, find the potential function for it. 5

(c) Use Green's theorem to find the area enclosed by the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$
3

(d) Show that the given integral is independent of path and use fundamental theorem of line integral to find its value.

$$\int_{(0,0)}^{\left(1,\frac{\pi}{2}\right)} \left(e^x \sin y \, dx \, + \, e^x \cos y \, dy\right) \tag{4}$$

UNIT-III

- 5. (a) Suppose that a curve lamina σ with constant density $\delta(x, y, z) = \delta_0$ is the portion of the paraboloid $z = x^2 + y^2$ below the plane z = 1. Find the mass of the lamina.
 - (b) Evaluate the surface integral $\iint_{\sigma} x^2 dx$, where σ is the part of the surface of sphere $x^2 + y^2 + z^2 = 1$. 5
 - (c) Verify Stoke's theorem for the vector field

 $\overline{F}(x, y, z) = z^2 \hat{i} + 2x \hat{j} - y^3 \hat{k}$, taking *C* to be the circle $x^2 + y^2 = 1$ with the counterclockwise orientation looking down the positive *z*-axis. 5

- 6. (a) Let σ be the portion of the surface $z = 1 x^2 y^2$ that lies above the *xy*-plane and suppose that σ is oriented up. Find the flux of the vector field $\overline{F}(x, y, z) = x\hat{i} + y\hat{j} + z\hat{k}$ across σ .
 - (b) Use Stoke's theorem to find the work performed by the force field $\overline{F}(x, y, x) = x^2 \hat{i} + 4xy^3 \hat{j} + y^2 x \hat{k}$ on a particle that traverses the rectangle *C* in the plane z = y.
 - (c) Use divergence theorem to find the outward flux of the vector field $\overline{F}(x, y, z) = x^3 \hat{i} + y^3 \hat{j} + z^2 \hat{k}$ across the surface of the region enclosed by the circular cylinder $x^2 + y^2 = 9$ and the plane z = 0 and z = 2.

UNIT-IV

- 7. (a) If ax + by is transform to a'x' + b'y' due to rotation of axes, then show that $a^2 + b^2 = a'^2 + b'^2$.
 - (b) Reduce the following equation to its canonical form $x^{2} + 4xy + y^{2} - 2x + 2y + 6 = 0$.

(c) Prove that the equation of the tangent at any point P(h, k) on an

ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 is $\frac{hx}{a^2} + \frac{ky}{b^2} = 1$. 5

5

8. (a) Transform the equation $3x^2 + 2xy + 3y^2 - 1 = 0$ if the axes are rotated through an angle 45°.

(b) Prove that the length of the focal chord of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ which is inclined at an angle θ to the major axis is

$$\frac{2ab^2}{a^2\sin^2\theta + b^2\cos^2\theta}.$$

3

(c) Prove that the tangent at the extremities of a pair of conjugate diameters of an ellipse forms a parallelogram with constant area.

UNIT-V

- 9. (a) Find the image of the point (1, 6, 3) in the line \$\frac{x}{1}\$ = \$\frac{y-1}{2}\$ = \$\frac{z-2}{3}\$. 4
 (b) Find the equation of the plane passing through the points (1, 2, 3), (2, 3, 4) and perpendicular to the plane 2x + 3y 4z = 9. 5
 - (c) Show that the straight line through the points (a, b, c) and (α, β, γ) passes through the origin if $\alpha a + \beta b + \gamma c = Pp$, where *P* and *p* are the distances of the points from the origin. 5
- 10. (a) If A, B, C are three points on the coordinate axes such that OA = a, OB = b and OC = c where O is the origin. Find the point which is equidistant from A, B, C and origin. 5
 - (b) Find the equation of the image line of the line $\frac{x-1}{3} = \frac{y-3}{5} = \frac{z-4}{2}$ in the plane 2x - y + z + 6 = 0.
 - (c) Prove that the angle between the lines whose direction cosines satisfy

$$l + m + n = 0$$
 and $l^2 = m^2 + n^2$ is $\frac{\pi}{3}$.