2023 B.A./B.Sc. First Semester GENERIC ELECTIVE – 1 MATHEMATICS Course Code: MAG 1.11 (Calculus)

Total Mark: 70 Time: 3 hours

Answer five questions, taking one from each unit.

UNIT-I

- 1. (a) A point moves in a line so that its distance S cm measured from a fixed point O on the line at time t seconds reckoned from some fixed epoch is given by $S = t^3 6t^2 15t$. Find the following: 5
 - (i) Velocity and acceleration at any instant, at the end of first second.
 - (ii) The average velocity while *t* changes from 1 to 6 seconds.
 - (iii) When and where the body stops.
 - (b) If $y = a \cos(\log x) + b \sin(\log x)$ for x > 0, show that (i) $x^2y_2 + xy_1 + y = 0$ (ii) $x^2y_{n+2} + (2n+1)xy_{n+1} + (n^2+1)y_n = 0$

(c) Find the *n*th derivative of $y = \frac{x}{(x-1)(x-2)}$, using partial fraction method.

2. (a) If
$$y = \sin(\sin x)$$
, prove that $\frac{d^2 y}{dx^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0$. 4

- (b) Find the n^{th} derivative of $y = \cos 5x \cos 2x$.
- (c) If $y = \tan^{-1}x$, show that (i) $(1 + x^2)y_1 = 0$ (ii) $(1 + x^2)y_{n+2} + 2(n+1)xy_{n+1} + n(n+1)y_n = 0$

Pass Mark: 28

4

5 5

UNIT-II

UNIT-III

5. (a) Obtain the expansion of the function with the remainder of Lagrange's form

$$(1+x)^{1/5} = 1 + \frac{1}{5}x - \frac{2}{25}x^2 + \frac{6}{125}x^3 - \frac{42}{1250}x^4(1+\theta x)^{-19/5}.$$
 4

- (b) Evaluate $\lim_{x \to 0} \frac{\sin x \tan x}{x^3}$ using Taylor's series. 4
- (c) Prove by repeated differentiation of the identity $(1-x)^{-1} = 1 + x + x^2 + x^3 + \dots$ where |x| < 1, that if *m* be a positive integer then

$$(1-x)^{-m} = 1 + mx + \frac{m(m+1)}{1.2}x^2 + \frac{m(m+1)(m+2)}{1.2.3}x^3 + \dots$$
 6

6. (a) Expand sin x in powers of $\left(x - \frac{\pi}{2}\right)$ by Taylor's theorem. 5

(b) Evaluate
$$\lim_{x \to 0} \frac{1 - e^x}{1 + x - e^x}$$
 using Taylor's series. 4

(c) Show that
$$\frac{1}{x} = \frac{1}{2} - \frac{1}{2^2}(x-2) + \frac{1}{2^3}(x-2)^2 - \dots; 0 < x < 4.$$
 5
UNIT-IV

7. (a) Evaluate
$$\int \frac{x^2 dx}{(x^2 + a^2)(x^2 + b^2)}$$
. 5

- (b) Obtain reduction formula for $\int \cos^n x dx$; *n* being positive integer greater than 1 and hence evaluate $\int \cos^5 x dx$. 5
- (c) Apply beta and gamma functions to prove that $\int_{0}^{\pi/2} \sin^{4} x \cos^{4} x dx = \frac{3\pi}{256}.$

4

4

8. (a) Evaluate
$$\int_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx = \frac{\pi}{4}$$
. 5

(b) Prove that beta function,
$$B(m,n) = \int_0^1 \frac{x^{m-1} + x^{n-1}}{(1+x)^{m+n}} dx$$
. 5

(c) Show that
$$\int \frac{\sin^5 x}{\cos^4 x} dx = \frac{1}{3\cos^3 x} - \frac{2}{\cos x} - \cos x.$$
 4

UNIT-V

- 9. (a) Find the area of the surface generated by revolving about y-axis the part of the astroid $x = a \cos^3 \theta$, $y = a \sin^3 \theta$, that lies in the first quadrant. 5
 - (b) Given that the area between the curves $y^2 = 4ax$ and $x^2 = 4ay$, (a > 0), revolves about the x-axis. If V be the volume of the solid thus formed, then show that $V = \frac{96}{5}\pi a^2$. 5

(c) Find the perimeter of the cardioide $r = a(1 + \cos \theta)$.

- 10. (a) Use method of rings to find the volume of the solid region bounded by the curve $y = x^2 + 1$ and the line y = -x + 3 when it is revolved about the *x*-axis to generate a solid. 5
 - (b) Find the area of the surface generated by revolving the portion of the curve $y = x^3$ between x = 0 and x = 1 about the *x*-axis. 5
 - (c) Find the length of the arc of the curve $x = a(\cos \theta + \theta \sin \theta)$, $y = a(\sin \theta - \theta \cos \theta)$ from $\theta = 0$ to $\theta = \pi$.

4