2023 B.A./B.Sc. Fifth Semester DISCIPLINE SPECIFIC ELECTIVE – 1 MATHEMATICS Course Code: MAD 5.11

(Number Theory)

Total Mark: 70 Time: 3 hours Pass Mark: 28

5

4

5

5

4

Answer five questions, taking one from each unit.

UNIT-I

- 1. (a) Prove that the linear Diophantine equation ax + by = c has a solution if and only if d | c, where d = gcd(a, b). If x_0, y_0 is any particular solution, derive a formula to obtain all the other solutions. 3+2=5
 - (b) If p and q are distinct primes with $a^p \equiv a \pmod{q}$ and $a^q \equiv a \pmod{p}$, prove that $a^{pq} \equiv a \pmod{pq}$.

(c) If $ca \equiv cb \pmod{n}$, then show that $a \equiv b \binom{m}{m}$, where d = gcd (c, n).

- 2. (a) Solve the linear congruence $140x \equiv 133 \pmod{301}$.
 - (b) If p is an odd prime, prove that $1^p + 2^p + \ldots + (p-1)^p \equiv 0 \pmod{p}$.
 - (c) If p is a prime and p | ab, then prove that p | a or p | b.

UNIT-II

3. (a) If *f* is a multiplicative function and *F* is defined by $F(n) = \sum_{d|n} f(d)$, then show that *F* is also multiplicative. 5

- (b) If both g and the Dirichlet product of f and g, f * g, are multiplicative, then prove that f is also multiplicative. 5
 (c) Show that the functions τ and σ are multiplicative functions. 4
 4. (a) If F and f are two number theoretic functions related by the formula F(n) = ∑ f(d), then show that F(n) = ∑ μ(d) F(n/d). 5
 - (b) If *n* is a square free integer, prove that $\tau(n) = 2^r$, where *r* is the number of prime divisors of *n*.

5

4

(c) The Liouville λ -function is defined by $\lambda(1) = 1$ and $\lambda(n) = (-1)^{k_1+k_2+\ldots+k_r}$, if the prime factorization of *n* is $n = p_1^{k_1} p_2^{k_2} \ldots p_r^{k_r}$. Prove that λ multiplicative.

UNIT-III

(a) If *n* and *r* are positive integers with $1 \le r \le n$, then prove that the 5. binomial coefficient ${}^{n}C_{r}$ is also an integer. 5 (b) If $n \ge 1$ and gcd(a, n) = 1, then prove that $a^{\phi(n)} \equiv 1 \pmod{n}$. 5 (c) Show that if gcd(a, n) = gcd(a-1, n) = 1, then $1 + a + a^2 + \ldots + a^{\phi(n)-1} \equiv 0 \pmod{n}$. 4 (a) If the integer n > 1 has the prime factorization $n = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}$, 6. then show that $\sum_{d|r} \mu(d) \phi(d) = (2 - p_1)(2 - p_2) \dots (2 - p_r).$ 5 (b) Prove that $n = \sum_{d \in \mathcal{A}} \phi(d)$, for each positive integer $n \ge 1$. 5 (c) For what value of *n* does *n*! terminate in 37 zeros? 4

UNIT-IV

- 7. (a) If the integer *a* has order *k* modulo *n* and h > 0, then prove that the order of a^h modulo *n* is $\frac{k}{\gcd(h,k)}$.
 - (b) Show that the integer 2^k has no primitive roots for $k \ge 3$. 5

(c) Evaluate the Legendre symbol $\left(\frac{-219}{383}\right)$ and the Jacobi symbol

$$\left(\frac{21}{221}\right).$$

8. (a) If p is an odd prime, then show that

$$\left(\frac{2}{p}\right) = \begin{cases} 1 & \text{if } p \equiv 1 \pmod{8} \text{ or } p \equiv 7 \pmod{8} \\ -1 & \text{if } p \equiv 3 \pmod{8} \text{ or } p \equiv 5 \pmod{8} \end{cases}$$
5

(b) If p is an odd prime, show that $\sum_{a=1}^{p-1} \left(\frac{a}{p}\right) = 0.$ 5

(c) If p is an odd prime, show that $x^{p-2} + x^{p-3} + \ldots + x + 1 \equiv 0 \pmod{p}$ has exactly p - 2 incongruent solutions.

UNIT-V

9.	(a)	The ciphertext BS FMX KFSGR JAPWL is known to have resulted	d
		from a Vigenere cipher whose keyword is YES. Obtain the	
		deciphering congruences and write the message.	5
	(b)	Prove that the radius of the inscribed circle of a Pythagorean triangle	e
		is always an integer.	5
	(c)	If x, y, z is a primitive Pythagorean triple, prove that $x + y$ and $x - y$	y
		are congruent modulo 8 to either 1 or 7.	4
10.	(a)	The ciphertext message produced by the RSA algorithm with	
		key $(n, k) = (2573, 1013)$ is 0464 1472 0636 1262 2111.	
		Determine the original message.	5
	(b)	Prove that the area of a Pythagorean triangle can never be equal to	a
		perfect (integral) square.	5
	(c)	If x, y, z is a primitive Pythagorean triple, then one of the integers x	
		or y is even, while the other is odd.	4