2023 B.A./B.Sc. Fifth Semester CORE – 12 MATHEMATICS Course Code: MAC 5.21 (Group Theory - II)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

- 1. (a) Define inner automorphism of a group G and determine the set of all inner automorphisms of the dihedral group D_4 of order 8. 4
 - (b) Let *H* be a normal subgroup of *K* and *K* be a characteristic subgroup of *G*. Then give an example to show that *H* need not be normal in *G*.
 - 4
 - (c) Let $a, b, c \in G$. Prove that $[a, bc] = [a, c](c^{-1}[a, b]c)$. 3
 - (d) If p is an odd prime, then prove that the automorphism group of the cyclic group of order p is of order p-1. 3
- 2. (a) If a group G is isomorphic to H, prove that Aut(G) is isomorphic to Aut(H).
 - (b) Let G be a group with subgroups H and K with $H \le K$. 3+3=6
 - (i) Prove that if H is characteristic in K and K is normal in G then H is normal in G.
 - (ii) Prove that if H is characteristic in K and K is characteristic in G then H is characteristic in G.
 - (c) Prove that if $x, y \in G$ then $[y, x] = [x, y]^{-1}$. Deduce that for any subsets *A* and *B* of *G*, [A, B] = [B, A].

UNIT-II

3. (a) Let *s* and *t* be relatively prime. Prove that U(st) is isomorphic to the external direct product of U(s) and U(t). 5

5

4

5

(b) Prove or disprove:

Any finite group G of prime-power order can be written in the form

 $\langle a \rangle \times K$, where *a* is an element of maximum order in *G* and *K* is a subgroup of *G*.

- (c) Show that the multiplicative group of nonzero real numbers is an internal direct product of two non trivial subgroups.
- 4. (a) Prove that the internal direct product of two subgroups *H* and *K* of a group *G* is isomorphic to the external direct product of *H* and *K*. 5
 - (b) Prove that any abelian group of order 45 has an element of order 15.
 - (c) Determine the number of automorphisms of order 12 in Aut (\mathbb{Z}_{720}) .

UNIT-III

- 5. (a) Let G be the dihedral group D_4 of order 8. 3+4=7
 - (i) If A is the set of all left cosets of a subgroup H in G, show that G acts on A.
 - (ii) Let *H* and *V* be the horizontal and vertical axes of symmetries of a square. Show that *G* acts on $\{H, V\}$ and determine the kernel of this action.
 - (b) Prove that the symmetric group S_5 acts transitively in its usual action as permutation on $A = \{1, 2, 3, 4, 5\}$.
 - (c) Show that the kernel of an action of the group G on the set A is the same as the kernel of the corresponding permutation representation $G \rightarrow S_A$.
- 6. (a) Define kernel of the action of a group *G* on a set *A*. Show that the additive group \mathbb{R} acts on the *xy*-plane $\mathbb{R} \times \mathbb{R}$ by

r.(x, y) = (x + ry, y), where $r \in \mathbb{R}$ and $(x, y) \in \mathbb{R} \times \mathbb{R}$. 1+3=4

(b) Let *G* be a finite group acting on a set *A*. For each $a \in A$, let \mathcal{O}_a denote the orbit of *G* containing *a* and G_a denote the stabilizer of *a* in *G*. Prove that $|G| = |G_a||\mathcal{O}_a|$ 5

(c) Let $G = S_n$, fix $i \in \{1, 2, 3, ..., n\}$ and let $G_i = \{\sigma \in G \mid \sigma(i) = i\}$. Use group action to prove that G_i is a subgroup of G. Find $|G_i|$. 5

UNIT-IV

- 7. (a) If G is a group of odd order, prove for any non-identity element $x \in G$ that x and x^{-1} are not conjugate in G.
 - (b) For a group G with |G| > 1, verify if G acts transitively on itself by conjugation. Also, prove that the one element set $\{a\}$ is a conjugacy class if and only if a is in the centre of G. 2+3=5

5

4

(c) Let σ be an *m*-cycle in the symmetric group S_n . Then if $C_{S_n}(\sigma)$ is the centralizer of σ , prove that $C_{S_n}(\sigma) = m.(n-m)!$ 4

- 8. (a) Determine the class equation for non-abelian groups of order 39 and 55. 5
 - (b) Find all finite groups up to isomorphism which have exactly two conjugacy classes.
 - (c) Let $\sigma \in A_n$. Show that all elements in the conjugacy class of σ in S_n are conjugate in A_n if and only if σ commutes with an odd permutation. 5

UNIT-V

9.	(a)	Show that the centre of a group of order 60 cannot have order 4.	4
	(b)	Let <i>n</i> be an odd number greater than 1. Prove that there does not	
		exist a simple group of order 2.n.	5
	(c)	Define Sylow <i>p</i> -subgroup of a group <i>G</i> . Let <i>P</i> be a Sylow	
		<i>p</i> -subgroup of <i>G</i> . If <i>P</i> is normal in <i>G</i> , prove that all subgroups	
		generated by elements of <i>p</i> -power order are <i>p</i> -groups. 1+4=	=5
10.	(a)	How many Sylow 5-subgroups does S_5 have? Exhibit two.	4
	(b)	Let G be a group of order 60. If the Sylow 3-subgroup is normal,	
		show that the Sylow 5-subgroup is normal.	5
	(c)	Find all normal subgroups of S_n for all $n \ge 5$.	5