2023 B.A./B.Sc. Fifth Semester CORE – 11 MATHEMATICS Course Code: MAC 5.11 (Multivariate Calculus)

Total Mark: 70 Time: 3 hours

Answer two questions, taking one from each unit.

UNIT-I

- 1. (a) Find the domain and range of $f(x, y) = \frac{1}{\sqrt{16 x^2 y^2}}$ also define limit of a function of two variables. (b) Evaluate $\lim_{(x,y)\to(0,0)} \frac{3x^2y}{x^2 + y^2}$ if it exists. (c) Investigate continuity at (0, 0) for the function $f(x, y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$ 4
- 2. (a) By using definition of partial derivatives $f(x, y) = 4 + 2x 3y xy^2$ evaluate $f_x(-2,1)$ and $f_y(-2,1)$. $2^{\frac{1}{2}+2\frac{1}{2}=5}$
 - (b) If $z = e^2 \sin y$ where $x = st^2$ and $y = s^2 t$ find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$ in terms of s and t. 2+2=4
 - (c) Show that the function $w = \ln(2x+2ct)$ satisfies one-dimensional wave equation. 5

Pass Mark: 28

UNIT-II

- 3. (a) Find the directional derivative of $f(x, y, z) = x^3 xy^2 z$ at (1,1,0) in the direction $\vec{u} = 2\hat{i} 3\hat{j} + 6\hat{k}$. In what direction does f increase most rapidly at (1,1,0). 3+2=5
 - (b) Find the equations of the tangent plane and normal line to the surface $\frac{x^2}{4} + y^2 + \frac{z^2}{9} = 3 \text{ at } (-2, 1, -3).$ 2+2=4
 - (c) Find the absolute maximum and absolute minimum values of $f(x, y, z) = 2 + 2x + 4y x^2 y^2$ on the triangular region in the first quadrant bounded by the lines x = 0, y = 0 and y = 9 x. 5
- 4. (a) Use Lagrange multipliers to find the extreme values of f = xy subject to $4x^2 + 8y^2 = 16$. Also find the points. 4+1=5
 - (b) If ϕ is a scalar function and \vec{F} is a vector field then show that $curl(\phi\vec{F}) = \phi curl \vec{F} + \vec{\nabla}\phi \times \vec{F}$.

(c) If
$$\vec{F} = x^2 y \hat{i} + xz \hat{j} + 2yz \hat{k}$$
 then show that $div curl \vec{F} = 0$ 5

UNIT-IIi

5. (a) Evaluate
$$\int_{0}^{\log 2} \int_{1}^{\log 5} e^{2x+y} dy dx$$
. 4

(b) Evaluate
$$\int_{0}^{1} \int_{0}^{1} \frac{x}{x^{2} + y^{2}} dx dy$$
 5

(c) Find the volume of the region bounded by the paraboloid $z = x^2 + y^2$ and below by the triangle enclosed by the lines y = x, x = 0, x + y = 2.

6. (a) Evaluate $\iint_{R} e^{x^{2}+y^{2}} dy dx$ where *R* is the semi-circular region bounded by *x*-axis and the curve $y = \sqrt{1-x^{2}}$.

(b) Evaluate
$$\int_{0}^{2} \int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} \int_{0}^{2x+y} dz dy dx$$
 5

(c) Use cylindrical co-ordinate system to find $\int_{-3}^{3} \int_{-\sqrt{9-x^2}}^{\sqrt{9-x^2}} \int_{0}^{9-x^2-y^2} x^2 dz dy dx.$

UNIT-IV

- 7. (a) By changing variables $x = u^2 v^2$, y = 2uv such that $0 \le u \le 1$, $0 \le v \le 1$, evaluate $\iint_R y dA$ where *R* is the region bounded by the *x*-axis and parabolas $y^2 = 4 - 4x$ and $y^2 = 4 + 4x$. 5
 - (b) Evaluate $\int_{C} 2x ds$ where C consists of the arc C_1 of the parabola $y = x^2$ from (0, 0) to (1, 1) followed by the vertical line segments C_2 from (1, 1) to (1, 2). 5
 - (c) Find the work done by the force field $\vec{F}(x, y) = 3xy\hat{i} 10x\hat{k}$ in moving a particle along the curve $x = t^2 + 1$, $y = 2t^2$, $z = t^3$ from t = 1 to t = 2.
- 8. (a) Evaluate $\int_C (yz + zx + xy) ds$ where C is the curve $\vec{r}(t) = a\cos t\hat{i} + b\sin t\hat{j} + ct\hat{k}, \ 0 \le t \le \frac{\pi}{2}.$ $(3.3) \left[\left(x + e^y \right) + e^y \right] = \left(e^x - y + e^y \right)$
 - (b) Show that the integral $\int_{(1,1)}^{(3,3)} \left\{ \left(e^x \log y \frac{e^y}{x} \right) dx + \left(\frac{e^x}{y} e^y \log x \right) dy \right\}$ where *x*, *y* are positive, is independent of path and find its value by

4

using fundemental theorem of integral calculus.
$$4+1=5$$

(c) Use the transformations $u = x$, $v = z-y$, $w = xy$ to calculate

$$\iiint_{R} (z-y)^{2} xy \, dv \text{ where } R \text{ is the region enclosed by the surfaces}$$

$$x^{R} = 1, x = 3, z = y, z = y + 1, xy = 2, xy = 4.$$

UNIT-V

- 9. (a) Verify Green's theorem for the vector field $\vec{F} = -x^2 yi + xy^2 \hat{j}$ and bounded the region by the circle $\vec{r}(t) = a \cos t \hat{i} + a \sin t \hat{j}$, $0 \le t \le 2\pi$.
 - (b) Evaluate $\iint_{S} \vec{F} \cdot \vec{n} ds$ where $\vec{F} = 18z\hat{i} 12\hat{j} + 3y\hat{k}$ and S is the part of the plane 2x + 3y + 6z = 12 in the first octant. 5

5

4

- (c) By using Stoke's theorem prove that $div(curl \vec{F}) = \vec{0}$ for a vector field \vec{F} .
- 10. (a) State divergence theorem. Use divergence theorem to evaluate $\iint_{s} (x+z) dy dz + (y+z) dz dx + (x+y) dx dy \text{ where } S \text{ is the surface}$ of the sphere $x^{2} + y^{2} + z^{2} = 4$. 1+4=5
 - (b) Verify Stoke's theorem for $\vec{F} = (x^2 + y^2)\hat{i} 2xy\hat{j}$ taken round the rectangle bounded by $x = \pm a$, y = 0 and y = b. 5

(c) If *S* is any closed surface enclosing a volume *V* and

$$\vec{F} = x\hat{i} + 2y\hat{j} + 3z\hat{k}$$
 then prove that $\iint_{S} \vec{F} \cdot \vec{n} ds = 6V$