2023 B.A./B.Sc. Third Semester CORE – 5 MATHEMATICS Course Code: MAC 3.11 (Theory of Real Functions)

Total Mark: 70 Time: 3 hours Pass Mark: 28

5

5

Answer five questions, taking one from each unit.

UNIT-I

1. (a) The set
$$\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$$
 has a cluster point. Justify. 4

- (b) Use the definition of limit to show that $\lim_{x\to 6} \frac{x^2 3x}{x+3} = 2$.
- (c) Let f be defined on $(0, \infty)$ to \mathbb{R} . Prove that $\lim_{x \to \infty} f(x) = L$ if and only if $\lim_{x \to 0^+} f\left(\frac{1}{x}\right) = L$.

2. (a) Show that
$$\lim_{x\to 0} (x + \operatorname{sgn}(x))$$
 does not exist

- (b) Let $A \subseteq \mathbb{R}$, let $f : A \to \mathbb{R}$ and let $c \in \mathbb{R}$ be a cluster point of *A*. In addition, suppose that $f(x) \ge 0$ for all $x \in A$ and let \sqrt{f} be the function defined for $x \in A$ by $\sqrt{f}(x) := \sqrt{f(x)}$. If $\lim_{x \to c} f$ exists, prove that $\lim_{x \to c} \sqrt{f} = \sqrt{\lim_{x \to c} f}$. 5
- (c) Let f and g be defined on $(0, \infty)$ and suppose that $\lim_{x \to \infty} f = L$ and $\lim_{x \to \infty} g = \infty$. Prove that $\lim_{x \to \infty} f \circ g = L$.

UNIT-II

- (a) Establish the discontinuity criterion. 5 3. (b) A function $f : \mathbb{R} \to \mathbb{R}$ is said to be additive if $f(x+y) = f(x) + f(y), \forall x, y \in \mathbb{R}$. Prove that if f is continuous at some point x_0 then it is continuous at every point of \mathbb{R} . 5 (c) Show that the function $f(x) := \frac{1}{1+x^2}$ is uniformly continuous on \mathbb{R} . 4 4. (a) If [a,b] is a closed and bounded interval and $f:[a,b] \to \mathbb{R}$ be continuous on [a,b], then show that f has an absolute maximum on [a,b].5 (b) Use the nonuniform continuity criterion, to show that $\sin\left(\frac{1}{r}\right)$ is not uniformly continuous on $(0, \infty)$. 5 (c) Let $I \coloneqq [a,b]$ and let $f: I \to \mathbb{R}$ be a continuous function on I such that for each x in I there exists y in I such that $|f(y)| \le \frac{1}{2} |f(x)|$. Prove that there exists a point $c \in I$ such that f(c) = 0. 4 **UNIT-III** (a) Find the points of relative extrema of the following functions: 5. (i) $f(x) \coloneqq \frac{x}{x^2 + 1}$ for $x \in \mathbb{R}$ $2^{1/2} \times 2 = 5$ (ii) $g(x) := |x^2 - 1|$ (b) Establish the chain rule. 7
 - (c) Differentiate and simplify the function $f(x) := (\sin x^k)^m$ for $m, k \in \mathbb{N}$.

2

- 6. (a) Let $f:[a,b] \to \mathbb{R}$ be continuous on [a,b] and differentiable on (a,b). Show that if $\lim_{x \to a} f'(x) = A$, then f'(a) exists and equals A. 5
 - (b) Let I ⊆ ℝ be an interval, c ∈ I, f, g : I → ℝ be functions that are differentiable at c. Then show that function fg is differentiable at c and (fg)'(c) = f'(c)g(c) + f(c)g'(c).
 - (c) Let *I* be an interval and let $f: I \to \mathbb{R}$ be differentiable on *I*. Show that if f' is positive on *I*, then *f* is strictly increasing on *I*. 4

UNIT-IV

- 7. (a) State and prove the mean value theorem.
 (b) Use the mean value theorem to obtain an approximate estimate of √111.
 (c) Evaluate : lim x^{1/x} in(0,∞).
 8. (a) Show ex ≤ e^x, ∀x ∈ ℝ.
 (b) Let f and g be differentiable on an open interval I and consider a ∈ I. Define h on I by the rules: h(x) = f(x) for x < a and h(x) = g(x) for x ≥ a. Prove h is differentiable at a if and only if both f(a) = g(a) and f'(a) = g'(a) hold.
 - (c) Let f be defined on \mathbb{R} , and suppose $|f(x) f(y)| \le (x y)^2$ for all $x, y \in \mathbb{R}$. Prove f is a constant function. 4

UNIT-V

9. (a) Approximate the number *e* with error less than 10^{-5} . 5 (b) Use Taylor's theorem to show that $1 - \frac{1}{2}x^2 \le \cos x$ for all $x \in \mathbb{R}$. 5

- (c) Let $f(x) \coloneqq \cos ax$ for $x \in \mathbb{R}$ where $a \neq 0$. Find $f^{(n)}$ for $n \in \mathbb{N}, x \in \mathbb{R}$.
- 10. (a) Let $I \subseteq \mathbb{R}$ be an open interval, let $f: I \to \mathbb{R}$ be differentiable on I, and suppose that f''(a) exists at $a \in I$. Show that

 $f''(a) = \lim_{h \to 0} \frac{f(a+h) - 2f(a) + f(a-h)}{h^2}$. Give an example where this limit exists, but the function does not have a second derivative at 5 a. 5

4

- (b) Compute Taylor's series for $\cos x$ about 0.
- (c) Obtain the inequality $e^{\pi} > \pi^{e}$ applying Taylor's theorem. 4