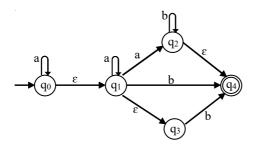
2023 B.A./B.Sc. Fifth Semester CORE – 12 COMPUTER SCIENCE Course Code: CSC 5.21 (Theory of Computation)

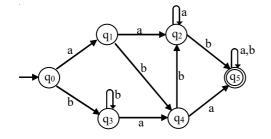
Total Mark: 70 Time: 3 hours Pass Mark: 28

4 + 4 = 8

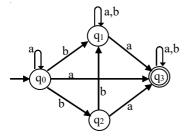
6


Answer five questions, taking one from each unit.

UNIT-I


1.	(a) Define a symbol and an alphabet.	2
	(b) What is the theory of computation? Explain complexity and	
	computability theory. 1+4	=5
	(c) What is a language? Explain the set operations on a language. 1+6	=7
2.	(a) Write a note on automated theory. Explain Kleene star and Kleene	e
2.	(a) Write a note on automated theory. Explain Kleene star and Kleene plus. 3+4	
2.		=7

UNIT-II


- 3. (a) Define DFA. What is a transition table and transition diagram?
 - (b) Convert the given ε -NFA to DFA:

- 4. (a) Define NFA.
 - (b) Minimize the given DFA:

(c) Convert the NFA to DFA.

UNIT-III

5.	(a) List and explain Chomsky classification of grammar.	8			
	(b) Show that a language $L = \{a^n b^n c^n, n \ge 1\}$ is not a context free				
	language.	6			
6.	(a) Define a CFG. Explain the closure properties of a context free				
	languages. 4+4	=8			
	(b) Derive the regular grammar G which produces				
	$L(G) = \{a^m b^n \mid m \ge 0 \text{ and } n \ge 0\}.$	3			
	(c) Construct a CFG over the language $L = \{a^n b^n c^m d^m, n, m \ge 1\}$.	3			
	UNIT-IV				

7. (a) List and explain the properties of a CSL. (b) Define linear bounded automaton. Design an LBA for the language $L = (a^n b^{2n}, n > 0)$. 4+6=10

5

4

- 8. (a) Explain a context sensitive language.
 - (b) Define a push down automaton. Design a PDA for the language $L = (a^n b^n, n > 0)$. 4+6=10

4

UNIT-V

9.	(a)	Write a note on recursive enumerable languages and list its			
		properties.	6		
	(b)	Define a Turing machine. Design a Turing machine for addition	n of two		
		unary numbers.	3+5=8		
10.	~ /	Differentiate between a decidable and undecidable language.	6		
	(b)	Design a Turing machine for the language $L = \{a^n b^n c^n\}$ where			
		n > 0.	8		