2023

B.A./B.Sc.

Third Semester

GENERIC ELECTIVE – 3

CHEMISTRY

Course Code: CHG 3.11 (Chemical Bonding, Transition Metals & Coordination Chemistry)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a) What are the main postulates of valence bond theory?	4		
	(b) Give the resonance structures of SO_4^{2-} and CO_3^{-2} ions.	11⁄2×2=3		
	(c) What is sp^2 type of hybridization? Discuss it with an example.	т 5		
		1+2=3		
	(d) Write short notes on the following:	2×2=4		
	(i) s-s overlapping			
	(ii) Resonance energy			
2.	(a) What are the main postulates of VSEPR theory?	4		
	(b) Draw the resonance structures of ClO_4^- and SO_3^- .	11⁄2×2=3		
	(c) Discuss the rules of hybridization.	3		
	(d) Write short notes on the following:	2×2=4		
	(i) Head to head overlapping			
	(ii) Sidewise overlapping			

UNIT-II

3. (a) With pictorial representation explain the formation of bonding and anti-bonding molecular orbitals by the combination of: $2\frac{1}{2}\times2=5$

(i) Two p_v atomic orbitals

(ii) s and \vec{p}_x orbitals

- (b) Write the MO configuration of CO molecule. Calculate its the bond order and draw its MO energy level diagram. 1+1+3=5
- (c) What is hydrogen bonding? Classify it with two examples each.

1+3=4

4

- 4. (a) Discuss the constructive and destructive interference of electron waves in the formation of bonding and anti-bonding orbitals.
 - (b) Write the MO electronic configuration of O_2^- ion. Calculate the bond order and draw its MO energy level diagram. 1+1+3=5
 - (c) What is bond order? Discuss how it affects the stability of ions and molecules with suitable examples. 1+4=5

UNIT-III

5.	(a)	Discuss the exceptional electronic configuration of Cr and Cu.	. 4
	(b)	Explain the various oxidation states exhibited by the 3d transiti	ion
		series and its relative stability.	5
	(c)	What are Latimer diagram? Explain the Latimer diagram for F	Fe.
			2+3=5
6.	(a)	Explain the magnetic properties of 3d transition series.	5
	(b)	What are lanthanoids? Mention the uses of cation exchanger a	and
		anion exchanger.	2+3=5
	(c)	Write the electronic configuration of thorium (atomic number	=90)
		and uranium (atomic number = 92).	2+2=4

UNIT-IV

7. (a) Define geometrical isomerism. Discuss geometrical isomerism in complexes of coordination number six. 1+5=6

- (b) Give the IUPAC name of the following: $1 \times 5=5$
 - (i) $[Mn(NH_3)_3(H_2O)_3]Cl_2$
 - (ii) $Na[Au(CN)_2]$
 - (iii) $K_4[Mo(CN)_8]$
 - (iv) $[Co(NH_3)_6]Cl_3$
 - (v) $Na_3[Co(NO_2)_6]$
- (c) How many isomers are produced for the square planar complex of the type Mabcd (M = metal)? Draw the possible square planar isomers.

- 8. (a) Explain ionisation and coordination isomerism with examples.
 - (b) Find out the magnetic character of the following by applying VBT and draw their structure. $2 \times 3=6$

2+2=4

7

 $1\frac{1}{2}+1\frac{1}{2}=3$

- (i) $[Ni(CO)_4]$
- (ii) $[Fe(CN)_6]^{-3}$
- (iii) $[CoF_6]^{-3}$
- (c) What is stereoisomerism? Discuss stereoisomerism of the complexes of the type $[M(aa)_3]$ (where, aa = bidentate ligand). 1+3=4

UNIT-V

- 9. (a) State Jahn Teller distortion. Which of the following complex ions have no weak and strong Jahn Teller distortion? $1+2\times3=7$
 - (i) $[CoF_6]^{-3}$
 - (ii) $[Fe(CN)_6]^{-4}$
 - (iii) $[Cr(H_2O)_6]^{+2}$
 - (b) Compare octahedral and tetrahedral complexes by taking their CFSE values and plot a graph.
 - (i) $[Co(NH_3)_6]^{3+}$
 - (ii) $[Fe(H_2O)_6]^{2+}$
 - (iii) $[Fe(CN)_6]^{4-}$

10. (a) Explain crystal field splitting of d-orbitals of octahedral complexes with neat diagrams. 5

- (b) Find out the magnetic character of the following: $2 \times 3=6$
 - (i) $[FeF_6]^{-3}$
 - (ii) $[Mn(H_2O)_6]^{+3}$
 - (iii) $[Co(CN)_6]^{-3}$
- (c) Calculate CFSE of
 - (i) d^4 (octahedral LS)
 - (ii) d^6 (tetrahedral).