2023 B.A./B.Sc. Fifth Semester CORE – 12 CHEMISTRY Course Code: CHC 5.21 (Physical Chemistry - V)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a)	Discuss the main points of Arrhenius theory of dissociation for stron	ng
		electrolytes.	3
	(b)	Explain in detail the principle of conductometric titration for	
		determination of solubility and solubility products of sparingly solub	ole
		salts.	4
	(c)	Briefly explain the term electrophoretic effect and relaxation effect	4
	(d)	Write a note on liquid junction potential.	3
2.	(a)	Define concentration cells. Explain the concentration cells with	
		transference.	5
	(b)	What is Walden's rule? Establish the relation between ionic mobility	у,
		viscosity, and radius of an ions.	5
	(c)	Write notes on the following: 2×2	=4
		(i) Debye-Falkenhagen effect	
		(ii) Wien effect	

UNIT-II

3.	(a)	Discuss the application of EMF measurement for determination of	
		free energy, enthalpy, and entropy of a cell reaction.	6
	(b)	Explain the Stern model for electrical double layer.	4
	(c)	Illustrate the working of metal-metal ion electrodes.	4

4.	(a)	Describe how to measure the pH value by quinhydrone method.	6
	(b)	State the principle of potentiometric titration and discuss its	
		application for acid-base titration.	5
	(c)	Briefly explain electro-catalysis process.	3
		UNIT-III	
5.	(a)	Explain the setting up of Schrödinger equation for many electron	6
		system.	

(b) Explain the application of valence bond theory to the study of H_2 molecule in terms of exchange of electrons and screening effect of electrons.

5

5

2

(c) Write short notes on the physical picture of bonding wave function.

			3
б.	(a)	Derive the wave functions for the treatment of LCAO-MO to H_2^+	
		ions.	7
		~ · · · · · · · · · · · · · · ·	

(b) State the variation theorem and discuss how it can be applied for simple system.

(c) Write short notes on the need of approximation technique.

UNIT-IV

7.	(a)	Describe pure rotational Raman spectra of a diatomic molecules.	6
	(b)	Discuss the principle and application of ESR spectroscopy.	6
	(c)	What are Stokes and anti-Stokes lines?	2
8.	(a)	State and illustrate with suitable potential energy cures the Franck-	
		Condon principle.	6
	(b)	Explain the principle of NMR. State some of its applications in	
		chemistry.	5
	(c)	What are fluorescence and phosphorescence?	3

UNIT-V

9.	(a)	State and explain Lambert-Beer law for light absorption by solutions.	
		What is meant by molar conduction coefficients?	7
	(b)	Derive the Stern-Volmer equation for quenching of fluorescence.	5
	(c)	Write a note on chemiluminescence.	2

10. (a)	Using photosynthesis of HCl as the example, explain the	
	photochemical reaction in which the quantum yield is extremely hi	gh.
		5
(b)	Explain Jablonski diagram depicting the various types of	
	photophysical processes.	5
(c)	Distinguish between photo-sensitizers and photo-inhibitors.	4