2023 B.A./B.Sc. **Third Semester** CORE - 7CHEMISTRY Course Code: CHC 3.31 (Physical Chemistry - III)

Total Mark: 70 Time: 3 hours

Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a)	Draw a well labelled diagram for water system. Discuss its salient features.	7
	a >		/
	(b)	Define incongruent melting point. Draw and explain the features of	_
		NaCl- H_2O system.	7
2.	(a)	Derive the Gibb's phase rule for non-reactive system taking a	
		specific example.	5
	(b)	Write short notes on the application of Clausius-Clapeyron equation	ı
		for liquid-vapour equilibria.	2
	(c)	Vapour pressure of water at 95° C and 100° C is 634 mm and	
		760 mm respectively. Calculate the molar heat of vaporization ΔH_{ν}	
		of water between 95° C and 100° C.	3
	(d)	Define the following terms: $2 \times 2 =$:4
		(i) Reduce phase rule	
		(ii) Eutectic point	

UNIT-II

3.	(a)	Draw and discuss the salient features of the phase diagram for	r
		lead-silver system.	4
	(b)	State and explain the lever rule. Apply it to illustrate the princi	ple of
		fractional distillation.	3+4=7
	(c)	Derive Gibbs-Duhem-Margules equation.	3

(c) Derive Gibbs-Duhem-Margules equation.

4.	(a)	Explain Nernst distribution law and state the conditions for the	e
		validity of the law.	4+2=6
	(b)	With the help of a diagram explain the features of triethylamine	e-water
		system.	4
	(c)	What are azeotropes? Explain the two types of azeotropes.	4
		UNIT_III	

5.	(a)	Derive an expression for the rate constant of a second order	
		reactions.	4
	(b)	Prove that if the half life period of first order reaction is 30 minutes,	
		that reaction will be 75% complete in 60 minutes.	4
	(c)	Differentiate between molecularity and order of reactions citing an	
		example.	4
	(d)	Name four factors affecting rate of a reactions.	2
6.	(a)	Derive the integrated expression for first order reactions. From this	
		expression derive the equation for half life of a first order reactions.	7
	(b)	Show how to test the rate law graphically from $t_{4/2}$ -values.	4
	(c)	Explain differential method for determining the order of reactions.	3

UNIT-IV

7.	(a)	Discuss in detail the activated complex theory (ACT) of bimolecula	ır
		reactions.	6
	(b)	Explain the concept of activation energy in chemical reactions.	4
	(c)	Can the activation energy of a reaction be zero or even negative?	
		Why?	4
8.	(a)	Discuss the kinetics of opposing or reversible reactions.	5
	(b)	Explain the collision theory of a bimolecular gaseous reactions.	5
	(c)	The rate constant of a second order reaction is	
		$5.70 \times 10^{-5} \text{ dm}^3 \text{mol}^{-1}\text{S}^{-1}$ at 25° C and $1.64 \times 10^{-4} \text{dm}^{-3} \text{mol}^{-1}\text{S}^{-1}$ at	
		40° C. Calculate the activation energy.	4

UNIT-V

9. (a) Derive the Michaelis-Menten equation for enzyme catalysed reaction.

(D)	Explain four factors affecting adsorption of gaseous on solid surface	es.
		4
(c)	What is meant by the term sorption? Give one example.	3
(a)	With the help of one example each, discuss the specificity and the	
	selectivity of a catalyst.	6
(b)	Draw the graphical representation of Freundlich adsorption isothern	n
	and interprete it.	4
(c)	Explain the efficiency of nano particles as catalyst.	4
	(c) (a) (b)	 (c) What is meant by the term sorption? Give one example. (a) With the help of one example each, discuss the specificity and the selectivity of a catalyst. (b) Draw the graphical representation of Freundlich adsorption isotherm