2022

B.A./B.Sc. Third Semester GENERIC ELECTIVE – 3 STATISTICS Course Code: STG 3.11

(Basics of Statistical Inference)

Total Mark: 70 Time: 3 hours Pass Mark: 28

 $2 \times 3 = 6$

Answer five questions, taking one from each unit.

UNIT-I

- 1. (a) Define the following terms:
 - (i) Estimate
 - (ii) Consistent estimate
 - (iii) Unbiased estimate of a parameter
 - (b) Show that $\frac{\left[\sum x_i \left(\sum x_i 1\right)\right]}{n(n-1)}$ is an unbiased estimate of θ^2 , for the sample $x_1, x_2, ..., x_n$ drawn on *X* which takes the values 1 and 0 with respective probabilities θ and $1-\theta$.
 - (c) X_1, X_2 and X_3 is a random sample of size 3 from a population with mean μ and variance σ^2 . T_1, T_2 and T_3 are the estimators used to estimate mean value μ , where $T_1 = X_1 + X_2 X_3$,

$$T_2 = 2X_1 + 3X_3 - 4X_2$$
 and $T_3 = \frac{1}{3} (\lambda X_1 + X_2 + X_3)$.

- (i) Are T_1 and T_2 unbiased estimators?
- (ii) Find the value of λ such that T_3 is an unbiased estimator of μ .
- (iii) Which is the best estimator?

1+2+2=5

- 2. (a) When would you say that the estimate of a parameter is good? Prove that if $T(X_1, X_2, ..., X_n)$ be an unbiased estimator for θ , it does not necessarily mean that T^2 will be an unbiased estimator for θ^2 .
 - 2+3=5

5

6

2

- (b) State the sufficiency of an estimator. Let $x_1, x_2, ..., x_n$ be a random sample from $N(\mu, \sigma^2)$ population. Find sufficient estimators for μ and σ^2 . 1+3=4
- (c) Explain the maximum likelihood estimator and write down its properties.

UNIT-II

- 3. (a) What are simple and composite statistical hypothesis. Give examples. 2+1=3
 - (b) Let p be the probability that a coin will fall head in a single toss in
 - order to test $H_0: p = \frac{1}{2}$ against $H_1: p = \frac{3}{4}$. The coin is tossed 5 times and H_0 is rejected if more than 3 heads are obtained. Find the probability of Type I error and power of test. 5
 - (c) State and prove Neyman-Pearson lemma.
- 4. (a) What is a statistical hypothesis? Define (i) Type I and type II error,
 (ii) Power of test, (iii) Level of significance, with reference to testing of a hypothesis. Explain how the best critical region is determined.
 1+2+1+1+2=7
 - (b) Explain the concept of most powerful test.
 - (c) Let X has a p.d.f. of the form

$$f(x,\theta) = \begin{cases} \frac{1}{\theta} e^{\frac{-x}{\theta}}, \ 0 < x < \infty, \ \theta > 0 \\ 0 & \text{, otherwise} \end{cases}$$

to test $H_0: \theta = 2$ against $H_1: \theta = 1$, use the random sample (x_1, x_2) of size 2 and define a critical region $W = \{(x_1, x_2): 9.5 \le x_1 + x_2\}$. Find the (i) power of the test, (ii) significance level of the test. 5

UNIT-III

5.							
	(b) Explain χ^2 test for goodness of fit and Yates's correction. $3\frac{1}{2}+3\frac{1}{2}=7$						
6.	 (a) Briefly explain the test of significance for paired <i>t</i>-test and <i>z</i>-test for single mean. (b) Discuss <i>F</i>-test of variance and test of significance of correlation coefficient. 7 						
UNIT-IV							
7.	 (a) Write the correct answer: 1×2=2 (i) Simple random sampling is a (A) probability sampling (B) non-probability sampling (C) mixed sampling (D) purposive sampling (ii) If from a population of size 6, a sample of size 3 is drawn without replacement, then the total number of possible samples will be (A) 18 (B) 15 (C) 20 (D) 21 (b) Write a note on sampling and non-sampling errors. 6 (c) Show that in simple random sampling without replacement 						
	(SRSWOR) the sample mean square is an unbiased estimate of the population mean square. 6						
8.	 (a) Write the correct answer: 1×2=2 (i) Sampling error arises due to the use of (A) purposive sampling (B) sampling techniques (C) probability sampling (D) census survey (ii) A sample consists of (A) all units of the population (B) 50% units of the population (C) 25% units of the population (D) a representative part of the population 						
	(b) Explain about the basics principles of sample survey. 6						

(c) Distinguished between simple random sampling with replacement (SRSWR) and simple random sampling without replacement(SRSWOR). Show that in SRSWOR the variance of the

estimate of the population is given by
$$V(\overline{x}_n) = (1-f)\frac{S^2}{n}$$
.
2+4=6

UNIT-V

- 9. (a) What is analysis of variance technique? Mention the assumptions for the validity of *F*-test. 3+2=5
 - (b) What are the basic principles of design of experiment? Explain each of them elaborately. 7
 - (c) Obtain the missing values of the following ANOVA table of a completely randomized design. $4 \times \frac{1}{2} = 2$

Sources of Variation	d.f.	SS	MS	F
Treatment	4			2.5
Error			20	2.3
Total	9	500		

- 10. (a) Represent the yield of a plot of a one-way classified data by a fixed effect additive linear model and estimate the parameters involved in it.
 - (b) Give an outline of statistical analysis of a randomized block design.

8