2022 B.A./B.Sc. Third Semester CORE – 5 STATISTICS Course Code: STC 3.11 (Sampling Distributions)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	 (a) State and prove weak law of large numbers. (b) State the Chebyshev's inequality. What are its uses? (c) A symmetric die is thrown 600 times. Find the lower bound for the probability of getting 80 to 120 sixes. 	7 4 e 3
2.	(a) Define the concepts: convergence in probability, almost sure convergence, convergence in mean square and convergence in distribution. 2×2	4=8
	(b) Let X_1, X_2X_n be iid Poi (λ) variates. Let $S_n = X_1 + X_2 +X_n$ Using central limit theorem, show how to obtain an approximate value of $P(a < S_n < b)$ using CLT.	6

UNIT-II

- 3. (a) Define the r^{th} order statistic and obtain its distribution.2+6=8(b) Hence or otherwise obtain the distribution of the smallest and largest order statistic.3+3=6
- 4. (a) Obtain the joint distribution of the *r*th and *s*th order statistic. Hence or otherwise, obtain the distribution of the range. 8

(b) Let $X_1, X_2...X_n$ be iid $\exp(\lambda)$ variates. Find the distribution of the smallest order statistics i.e the distribution of $Y_{(1)} = \min(X_1, X_2, ...X_n).$ 6

UNIT-III

5.	(a) Define the terms: Null hypothesis, composite hypothesis, type-I and		
	type-II errors, critical region and p-value, power of a test.	2×7=14	

- 6. (a) Define how to test the significance of difference of
 (i) two proportions and (ii) two means.
 (b) Explain the standard error of sample mean.
 3
 - (c) Distinguish between parameter and statistics giving examples. 3

UNIT-IV

7.	(a) Define a chi square variate with n d.f and derive its distribution. 2+6=	-8			
	(b) Show that variance of chi square distribution is twice its mean.	-0 6			
8.	 (a) If X and Y are chi square variates with <i>m</i> and <i>n</i> d.f. respectively, fin the distribution of X/Y. (b) State and prove the additive property of chi square distribution. 	nd 8 6			
	UNIT-V				
9.	(a) Obtain the distribution of Fisher's <i>t</i>-distribution.(b) Discuss the limiting form of <i>t</i>-distribution.	8 6			
10	 (a) Discuss the relationship between <i>F</i>-distribution and chi square distribution. (b) If <i>F</i> follows <i>F</i>-distribution with (<i>m</i>,<i>n</i>) d.f, show that 1/F follows F distribution with (<i>m</i>,<i>n</i>) d.f. 	8			