2022 B.A./B.Sc. First Semester GENERIC ELECTIVE – 1 PHYSICS Course Code: PHG 1.11 (Mechanics)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

- (a) What is an inertial frame of reference? Prove that vector sum of mass moments of all the particles forming a system about the centre of mass is zero.
 - (b) If the two vectors are given by $\vec{A} = 3\hat{i} 4\hat{j} \hat{k}$ and $\vec{B} = 2\hat{i} + 3\hat{j} + 2\hat{k}$. Find $\vec{A} \times \vec{B}$ and $\vec{A} \cdot \vec{B}$. 3+3=6
 - (c) A particle moves from position $3\hat{i} + 2\hat{j} 6\hat{k}$ to $14\hat{i} 13\hat{j} + \hat{k}$ in metre units and a constant force $4\hat{i} + 2\hat{j} + 3\hat{k}$ Newton acts on it, calculate the work done by the force. 3
- 2. (a) What is centre of mass of a system of particles? If no external force acts on a system of particles, prove that centre of mass is either at rest or moving with uniform velocity.
 - (b) Show that Newton's first law of motion is simply a special case of the second law. Discuss the limitations of Newton's laws of motion.

3+2=5

3

(c) If $\vec{A} = 2\hat{i} + 2\hat{j} + 3\hat{k}$ and $\vec{B} = 6\hat{i} - 3\hat{j} + 2\hat{k}$ are two vectors, find the angle between them.

UNIT-II

3. (a) Solve the differential equation $x \frac{d^2 y}{dx^2} - \frac{dy}{dx} = 3x^2$.

gravity.		

(b) Discuss light and critical damping.

- 4. (a) Derive the general expression of velocity and acceleration of a particle undergoing SHM. 3+3=6
 - (b) For a SHM, derive the expression of the average K.E. and P.E. of a particle. Show that the total energy of a particle executing SHM remain constant. 2+2+2=62

(c) Describe bar pendulum for the determination of acceleration due to

3+3=6

5

(c) What do you mean by compound pendulum?

UNIT-III

(a)	Obtain the equation of motion for equivalent one body problem for	
	the two masses.	6
(b)	Derive the expression of K.E. for a body in motion.	3
(c)	The position of a particle is given by $r = \hat{i} + 2\hat{j} - \hat{k}$ and linear	
	momentum $p = 3\hat{i} + 4\hat{j} - 2\hat{k}$. Find the angular momentum of the	
	particle.	3
(d)	State the law of conservation of angular momentum. Express it	
	mathematically.	2
(a)	Discuss the motion of a rocket and find its velocity when its weight	is
	taken into account.	6
(b)	Find the relation between torque and angular momentum and show	
	that in absence of torque the angular velocity remains constant.	3
(c)	The moon is revolving around the earth along a circular orbit of	
	radius r. Calculate the magnitude of orbital angular momentum of th	e
	moon.	3
(d)	State the law of conservation of energy.	2
	 (a) (b) (c) (d) (a) (b) (c) (d) 	 (a) Obtain the equation of motion for equivalent one body problem for the two masses. (b) Derive the expression of K.E. for a body in motion. (c) The position of a particle is given by r = î + 2 ĵ - k and linear momentum p = 3î + 4ĵ - 2k . Find the angular momentum of the particle. (d) State the law of conservation of angular momentum. Express it mathematically. (a) Discuss the motion of a rocket and find its velocity when its weight taken into account. (b) Find the relation between torque and angular momentum and show that in absence of torque the angular velocity remains constant. (c) The moon is revolving around the earth along a circular orbit of radius <i>r</i>. Calculate the magnitude of orbital angular momentum of th moon. (d) State the law of conservation of energy.

UNIT-IV

7. (a) Derive an expression for the intensity of the gravitational field due to spherical shell at a point outside the shell and on the surface of the shell. 3+3=6

(b)	Prove that the areal velocity of the radius vector for a particle under	•
	a central force is constant.	4

(c) Obtain the expression for radius of the orbit of the artificial satellite.

4

8.	(a)	Establish the expression of relativistic addition of velocities.	5
	(b)	Discuss the physiological effect on astronauts.	5

- (b) Discuss the physiological effect on astronauts.
- (c) The average lifetime of a π -meson is 2×10^{-8} second. Calculate the average life while it moves with a velocity 0.8 c. 4

UNIT-V

9.	(a)	Prove that $Y = 2\eta(1 + \sigma)$, where the symbols have their usual	
		meaning.	5
	(b)	Derive the expression for twisting couple per unit twist of a solid	
		cylinder.	5
	(d)	State Hooke's law. A cube of aluminium of side 10 cm is subjected	
		to a shearing force of 10 N. The top surface of the cube is displaced	d
		by 0.01 cm with respect to the bottom. Calculate shearing stress,	
		shearing strain and modulus of rigidity.	4
10.	(a)	Describe the determination of Young's modulus of elasticity for a wi	re
		by Searle's method.	5
	(b)	What is surface energy in a state of tension? Derive the relation	
		between surface tension and surface energy.	4
	(c)	Explain Newton's law of viscosity.	3
	(d)	A soap bubble is slowly enlarged from a radius of 0.01 m to 0.1 m .	
		Calculate the work done in the process. Surface tension of water is	
		given as 73×10^{-3} N/m.	2