2022

B.A./B.Sc. Third Semester

CORE - 7

PHYSICS

Course Code: PHC 3.31 (Analog Systems & Applications)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

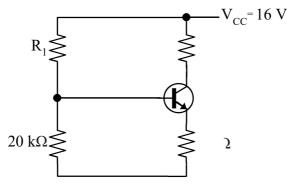
. (a) Explain the two types of extrinsic semiconductors.				
(b) Explain the barrier formation in PN junction diode.	3			
(c) Pure silicon at 300 K has equal electron and hole concentration of				
1.5×10^{16} per m ³ . Doping with indium increases n_{μ} to				
4.5×10^{22} per m ³ . Calculate n_{e} in the doped silicon.	2			
(d) Derive the expression for barrier potential of a PN junction diode.	7			
(a) Briefly explain the resistance in a PN junction diode.	3			
(b) Explain the I-V characteristics of PN junction diode.	4			
(c) Derive the expression for space charge width of a PN junction				
diode.	7			
	 (b) Explain the barrier formation in PN junction diode. (c) Pure silicon at 300 K has equal electron and hole concentration of 1.5×10¹⁶ per m³. Doping with indium increases n_h to 4.5×10²² per m³. Calculate n_e in the doped silicon. (d) Derive the expression for barrier potential of a PN junction diode. (a) Briefly explain the resistance in a PN junction diode. (b) Explain the I-V characteristics of PN junction diode. (c) Derive the expression for space charge width of a PN junction 			

UNIT-II

3.	a) What is ripple factor? Derive the expression for DC, rms, efficiency				
	and ripple factor of a full wave rectifier. 1+	-5=6			
	(b) Explain the working of a Zener diode and its role in voltage				
	regulation.	4			
	(c) A transistor using potential divider network biasing has the following				
	values: $R_1 = 50 \text{ k}\Omega$, $R_2 = 10 \text{ k}\Omega$, $R_E = 1 \text{ k}\Omega$, $V_{CC} = 12 \text{ V}$ and				
$V_{BE} = 0.1 V$. Find I_{C}					

(d) A full bridge rectifier uses two diodes. The forward bias resistance of each diode is 25Ω . The transformer rms secondary voltage is

 $50\sqrt{2}$ volt and load resistance of 1475Ω . Find: 1+1=2


- (i) Mean load current
- (ii) RMS value of load current
- 4. (a) Explain the working of a full wave rectifier. Explain the role of C filter in the signal rectification. Draw circuit diagrams wherever necessary.

3+2=5

- (b) What is a Zener diode? Explain how it can be used as a voltage regulator. 1+4=5
- (c) Plot a neat output characteristic graph of a CE transistor and hence explain: 4
 - (i) Active region
 - (ii) Cut-off region
 - (iii) Saturation region

UNIT-III

- (a) Explain the working of a CE amplifier with the help of circuit diagram. Plot the output characteristics of a CE biased amplifier with input and output signals.
 - (b) An n-p-n transistor circuit has $\alpha = 0.985$, $V_{BE} = 0.3$ V. If $V_{CC} = 16$ V, calculate R_1 and R_C to test the Q point at $I_C = 2$ mA, $V_{CE} = 6$ V. 4

- (c) What is the significance of Q-point? Differentiate between class A and class B power amplifiers. 1+3=4
- 6. (a) Using h-parameters, derive the expression for current gain (A_i) , voltage gain (A_v) input impedance (Z_i) and output impedance (Z_o) .

6

8

- (b) Explain the R-C working of coupled amplifier with the help of circuit diagram. Also, explain the frequency response curve of R-C coupled amplifier 3+3=6
- (c) What is the significance of 3 dB point in context of amplifier? 2

UNIT-IV

7.	(a) Explain positive feedback and negative feedback of an amplifier.						
	(b)	b) Explain in detail the different advantages of a negative feedback					
		amplifier.	8				
	(c)	In a negative feedback amplifier, $A = 100$, $\beta = 0.04$. Find: (i) Gain with feedback	4				

- (ii) Output voltage
- (iii) Feedback voltage
- (iv) Loop gain

0	\sim	3371 / 1	1	C 11 1 ·	1.6. 0	2
ð. ((a)	what do	you mean b	y feedback in	amplifiers?	2

- (b) With the help of a circuit diagram describe the operation of a Colpitts oscillator. Derive the expression for the frequency produced by the Colpitts oscillator. 3+7=10
- (c) A Colpitts oscillator have $L = 100 \,\mu\text{H}$, $C_1 = 0.005 \,\mu\text{F}$, $C_2 = 10 \,\mu$. Find the oscillation frequency. 2

UNIT-V

- 9. (a) Explain with proper circuit diagram, the application of op amp as a/an:
 - (i) Integrator
 - (ii) Adder
 - (iii) Differentiator
 - (iv) Log amplifier

- (b) With the help of a block diagram explain the basic elements of an operational amplifier (op amp). State the characteristics of an ideal op amp.
- 10. (a) Define common mode rejection ratio (CMRR), slew rate and virtual ground.
 - (b) Determine the output voltage of an op amp for input voltages of $V_{i1} = 150 \ \mu V$, $V_{i2} = 140 \ \mu V$. The amplifier has a differential gain of $A_d = 4000$ and CMRR = 100. 3
 - (c) With the help of a circuit diagram explain the function of an inverting amplifier. Derive an expression for voltage gain of an inverting amplifier.

3

- (d) For an ideal inverting amplifier with $R_1 = 1 k\Omega$, and $R_f = 1 M\Omega$, determine:
 - (i) Voltage gain
 - (ii) Input resistance
 - (iii) Output resistance