2022 B.A./B.Sc. Third Semester CORE – 6 PHYSICS Course Code: PHC 3.21 (Thermal Physics)

Total Mark: 70 Time: 3 hours Pass Mark: 28

2

5

3

Answer five questions, taking one from each unit.

UNIT-I

- 1. (a) Give any four postulates of kinetic theory of gases.
 - (b) Starting from the Maxwell-Boltzmann law of distribution of velocities in an ideal gas, derive the expressions for the average velocity, mean square velocity, root mean square velocity and the most probable velocity. 3+3+3=12
- 2. (a) Derive an expression for the probability for molecule to travel a distance *x* without suffering a collision.
 - (b) What are transport phenomena? Derive an expression for the coefficient of thermal conductivity of a gas. 1+6=7
 - (c) Calculate the values of molar heat capacity C_p and C_v of a gas if ratio of heat capacities is 1.49. Given R = 8.3 J/mole/K 2

UNIT-II

- 3. (a) What are critical constants of a gas? Obtain the expressions for critical temperature, pressure and volume in terms of the constants of Van der Waals equation.
 - (b) Calculate the Van der Waals constants for dry air, given that $T_c = 132 \text{ K}, P_c = 32.7 \text{ atmospheres and} \text{ R per molecule} = 82.07 \text{ cm}^3 \text{ atmosphere/K}.$

- 4. (a) Explain Joule-Thomson porous plug experiment and derive the fundamental equation of the Joule-Thomson effect. Discuss the results obtained from the experiment. 4+4+2=10
 - (b) Obtain the relation between Boyle temperature, critical temperature and temperature of inversion. 4

UNIT-III

5.	(a)	State the differential form of first law of thermodynamics and e	discuss
		its physical significance.	2+2=4
	(b)	Explain why the specific heat of a gas at constant pressure is g	greater
		than at constant volume. Derive Mayer's relation for the differ	rence
		between the two specific heats of a perfect gas.	2+4=6
	(c)	Derive the expression for the work done during an adiabatic	
		expansion of a perfect gas.	4
6.	(a)	Describe Carnot's reversible heat engine and obtain an expres	ssion
		for its efficiency.	4+4=8
	(b)	Discuss the thermodynamical scale of temperature. Show that this	
		scale of temperature is identical with the perfect gas scale of	
		temperature.	3+3=6

UNIT-IV

- (a) Explain how the concept of entropy leads to second law of thermodynamics. Draw the temperature entropy diagram for a Carnot's cycle and show that its area represents the available energy.
 2+3=5
 - (b) What is an isentropic process? Show that in irreversible processes entropy always increases. 1+3=4
 - (c) State Clausius inequality and prove it for the case of reversible cycle.

1+2=3

(d) Calculate the change in entropy when 20 gms of ice at 0°C is converted into water at the same temperature. The latent heat of ice is given by 80 cal/gm.

8.	(a)	Why does a natural system always tend to change in the di	rection of
		increasing disorder? Derive an expression for the change of	of entropy
		of a perfect gas in respect of pressure and volume.	2+3=5
	(b)	State and explain the third law of thermodynamics.	3
	(c)	Explain the four thermodynamic potentials.	4
	(d)	30 g of water at 0°C is mixed with an equal mass of water	r at 80°C.

Calculate the change in entropy. 2

UNIT-V

9.	(a)	Starting from the four thermodynamic potentials, derive the	
		Maxwell's thermodynamic relations. $2+2+2+2=$	=8
	(b)	Explain how low temperature can be achieved by adiabatic	
		demagnetisation of paramagnetic substance.	4
	(c)	Write two energy equation obtained from Maxwell's relations.	2
10.	(a)	What is a triple point? Derive the expression for Clausius-	
		Clapeyron's latent heat equation from the first order phase	
		transitions. 1+4=	=5
	(b)	Using Maxwell's thermodynamic relation, explain the Joule-Thomse	on
		effect for Van der Waal's gas.	6
	(c)	Write the three TdS equation obtained from Maxwell's relations.	3