2022 B.A./B.Sc. First Semester CORE – 2 PHYSICS Course Code: PHC 1.21 (Mechanics)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a)	Determine whether length, velocity and acceleration are invariant under Galilean transformations.	6
	(b)	Prove that the law of conservation of energy is invariant to Galilean transformation.	5
	(c)	A moving particle has coordinates $(6t+3)$, $8t$, 5 in frame S at any time t . The frame S' is moving relative to S with a velocity	
		$(3\hat{i} + 4\hat{j})$ m/s. Find the coordinates and velocity of the particle in	
		frame S'.	3
2.	(a)	State and prove the law of conservation of momentum of a one particle and two particle systems.	5
	(b)	What is impulse? Prove that impulse is equal to the total change in momentum.	5
	(c)	Prove that work done is equal to the product of the component of force along the displacement and the displacement.	4

UNIT-II

3.	(a)	Discuss perfectly elastic collision in one dimension in a laboratory	
		frame.	6
	(b)	Prove that angular momentum of a rigid body is the product of its	
		moment of inertia and angular velocity.	4

- (c) What is moment of inertia? Prove that the moment of inertia is twice the kinetic energy of rotation of a body when its angular velocity is unity.
- 4. (a) Find the moment of inertia of a rectangular lamina about 10
 - (i) an axis through its centre and parallel to one side
 - (ii) an axis through its centre and perpendicular to the plane
 - (iii) an axis passing through the midpoint of one side and perpendicular to its plane
 - (iv) an axis passing through one of its corners and perpendicular to its plane
 - (b) Derive the expression of acceleration in case of a body rolling down an inclined plane. What is the acceleration in case of a cylinder? 4

UNIT-III

5.	(a)	Derive the expression of velocity and acceleration in a rotating fram	ne
		of reference.	5
	(b)	Obtain the components of acceleration in spherical polar coordinate	te
		system.	6
	(c)	Write short note on Global Positioning System (GPS).	3
6.		Find the gravitational potential due to a spherical shell at a point outside and inside the spherical shell. State and prove Kepler's law of planetary motion.	5 9
		•	

UNIT-IV

7.	(a) Prove the relation $Y = 3K(1-2\sigma)$ where the symbols have their	
	usual meaning.	5
	(b) Derive Poiseuille's equation for flow of liquid through capillary tube.	
		6
	(c) Calculate η and σ for silver. Given that $Y = 7.25 \times 10^{11}$ dynes/cm ²	
	and $K = 11 \times 10^{11}$ dynes/cm ² .	3
8.	(a) Derive the general equation of motion of a simple harmonic oscillato	r
	and obtain its various solutions.	8

- (b) The displacement of a moving particle at any time *t* is given by $y = a \cos \omega t + b \sin \omega t$. Show that the motion is simple harmonic. 3
- (c) A particle performing SHM has a mass 2.5 gm and frequency of vibration 10 Hz. It is oscillating with an amplitude of 2 cm. Calculate the total energy of the particle.
 3

UNIT-V

9.	(a)	Derive Lorentz transformation equations. Also write the inverse	
		Lorentz transformation equations.	8
	(b)	What is proper length? Discuss length contraction.	4
	(c)	A particle with a proper lifetime of 1 µs moves through the laborator	у
		at $2.7 \times 10^8 \text{ ms}^{-1}$. What is its lifetime as measured by an observer in the laboratory? What will be the distance traversed by it before	-
		disintegrating?	2
10.	(a)	Derive the relativistic formula for the variation of mass with velocity.	
			8
	(b)	Obtain the relation between total energy and momentum in relativisti	ic
		mechanics.	4
	(c)	Calculate the kinetic energy of an electron moving with a velocity of	•
		0.98 c in the laboratory system.	2