2022 B.A./B.Sc. First Semester CORE – 1 PHYSICS Course Code: PHC 1.11 (Mathematical Physics)

Total Mark: 70 Time: 3 hours Pass Mark: 28

5

Answer five questions, taking one from each unit.

UNIT-I

- 1. (a) If f(z) is an analytic function in the powers of $(\xi a)^n$, then write the Taylor's series expansion for $f(\xi)$. 2
 - (b) Obtain the solution for the second order homogeneous equation with constant coefficients. 7
 - (c) Show that the given differential equation is an exact differential

equation and solve it:
$$(1 + e^{x/y}) + e^{x/y} \left(1 - \frac{x}{y}\right) \frac{dx}{dy} = 0.$$
 5

2. (a) If
$$y_1 = e^{-x} \cos x$$
, $y_2 = e^{-x} \sin x$ and $\frac{d^2 y}{dx^2} + 2\frac{dy}{dt} + 2y = 0$, then

- (i) calculate the Wronskian determinant
- (ii) apply Wronskian test to check that y_1 and y_2 are linearly independent.
- (b) Find the point upon the plane ax + by + cz = p at which the function $f = x^2 + y^2 + z^2$ has a minimum value and find this minimum f. 6

(c) Solve the equation:
$$\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 9y = 5e^{3x}$$
 3

UNIT-II

3. (a) If $\phi = 3x^2y - y^3z^2$, find grad ϕ at the point (1,-2,-1). 3

- (b) Show that when three vectors lie in a plane, the volume of the parallelopiped is zero.
- (c) Find the directional derivative of $\phi = x^2 y + xz$ at (1,2,-1) in the direction of $\vec{A} = 2\hat{i} - 2\hat{j} + \hat{k}$.

7

4

4

4. (a) If
$$\vec{A}$$
 is a constant vector and $\vec{R} = x\hat{i} + y\hat{j} + z\hat{k}$, then prove that
 $curl\left[\left(\vec{A}.\vec{R}\right)\vec{A}\right] = \vec{A} \times \vec{R}$

- (b) Find the value of the constant 'a' so that the vector, $\vec{A} = (x+3y)\hat{i} + (2y+3z)\hat{j} + (x+az)\hat{k}$ is a solenoidal vector. 4
- (c) Derive the expression for the divergence of a vector field. 6

UNIT-III

5. (a) If $\vec{V} = (3x^2 + 6y)\hat{i} - 14yz\hat{j} + 20xz^2\hat{k}$, then evaluate $\int_C \vec{V} d\vec{r}$, where C is a straight line joining (0,0,0) and (1,1,1). Given $x = t, v = t^2, z = t^3$. 7 7

(b) State and prove Gauss's divergence theorem.

- 6. (a) Evaluate $\iiint (\vec{\nabla} \times \vec{F}) dV$, where *V* is the closed region bounded by the planes x = 0, y = 0, z = 0, 2x + 2y + z = 4 and $\vec{F} = (2x^2 - 3z)\hat{i} - 2xy\hat{j} - 4x\hat{k}$. 7
 - (b) Use the divergence theorem to show that, $\iint \nabla (x^2 + y^2 + z^2) d\vec{S} = 6V$ 7

UNIT-IV

(a) Derive the expression of $\nabla \phi$ in the orthogonal curvilinear coordinates.	8
(b) Express the following in spherical coordinates:	
(i) $\vec{\nabla} \times \vec{A}$	
(ii) $\vec{\nabla}^2 \psi$	3+3=6
	coordinates. (b) Express the following in spherical coordinates: (i) $\vec{\nabla} \times \vec{A}$

8. (a) Show that in the orthogonal coordinates:

(i)
$$\nabla .(A_1e_1) = \frac{1}{h_1h_2h_3} \frac{\partial}{\partial u_1} (A_1h_2h_3)$$

(ii) $\nabla \times (A_1e_1) = \frac{e_2}{h_3h_1} \frac{\partial}{\partial u_3} (A_1h_1) - \frac{e_3}{h_1h_2} \frac{\partial}{\partial u_2} (A_1h_1)$

(b) Express $div\vec{V}$ in the cylindrical coordinates.

UNIT-V

9.	(a)	Obtain the expression for the binomial distribution by the example of	f
		repeated tosses of a dice.	8
	(b)	State Bayes' theorem.	2
	(c)	Using the definition of a continuous probability distribution for the variance σ^2 of a continuous random variable, show that:	
		$\sigma^{2} = \left\langle X^{2} \right\rangle - \left\langle X \right\rangle^{2}$	4
10.	(a)	Define Dirac delta function.	2
	~ ~	Show that:	
		$\int_{-\infty}^{+\infty} f(t)\delta'(t-a)dt = -f'(a)$	4
	(c)	$\stackrel{\scriptscriptstyle -\infty}{\mathrm{Evaluate}}$ the following:	
		(i) $\int_{0}^{\infty} e^{-3t} \delta(t-4) dt$	2
		(ii) $\int_{-\infty}^{+\infty} e^{-3t} \delta(t-2) dt$	2
	(d)	Show that in the limit $\sigma \to 0$, the rectangular function $R_{\sigma}(x)$ has all	
		the properties of the Dirac delta function.	4

3×2=6

8