2022

M.Sc.

Third Semester

CORE - 10

PHYSICS

Course Code: MPHC 3.21 (Atomic & Molecular Spectroscopy)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1		1
1.	(a) In case of Sommerfeld model of atom, corresponding to <i>n</i>	i = 1,
	$n = 2$ and $n = 3$, what are the possible values of n_{ϕ} ? Illust	rate the
	possible orbits with diagram.	3
	(b) Obtain the expression of total energy of a single electron in	L
	Sommerfeld atomic model in absence of relativistic correct	ion. 8
	(c) Discuss how fine structure lines are produced in He^+ ?	3
2.	(a) Obtain the expression of energy in Sommerfeld atomic mo	del after
	introducing Sommerfeld relativistic correction.	10
	(b) State and discuss Ritz combination principle.	4
	UNIT–II	
3.	(a) Discuss the variation method of chemical bonding.	9
	(b) What is an MO wave function? Describe LCAO-MO wave	ve
	functions.	5
4.	(a) Discuss the MO treatment of hydrogen molecule ion and si	how that
	symmetric orbitals form a stable state.	10
	(b) Describe quantum theory of Raman effect.	4

UNIT-III

-

5.	(a)	What is electronic spectra of a molecule? Describe the salient features of molecular electronic spectra. Explain the formation of							
		electronic spectrum from electron transition in a molecule.							
		1+4+6 =	11						
	(b)	In the CO molecule, the wave number difference between the							
		successive absorption lines in the pure rotational spectrum is							
		384 m ⁻¹ . Calculate the moment of inertia of the molecule and the							
		equilibrium bond length of the molecule. Masses of the $\rm C^{12}$ and $\rm O^{1}$	6						
		atoms are respectively 1.99×10 ⁻²⁶ kg and 2.66×10 ⁻²⁶ kg.	3						
6.	(a)	State and explain Frank-Condon principle.	4						
	~ /	Discuss vibrational spectra of diatomic molecule.	4						
	· · ·	Describe vibrating diatomic molecule as anharmonic oscillator.	6						
		UNIT-IV							
7.	(a)	Describe the relaxation mechanisms in NMR spectroscopy.	6						
/ ·	· /	Explain chemical shift in NMR spectroscopy.	6						
	~ ~	What is nuclear magnetic moment? Express it mathematically.	2						
	(0)	what is nuclear magnetic moment. Express it manematicany.	2						
8.	~ /	Explain how fine structure is obtained in ESR spectroscopy. What is electron nuclear double resonance? Describe double	4						

resonance in ESR spectroscopy. 5 (c) What is ESR spectroscopy? Explain how does electron spin interact with magnetic field? 5

UNIT-V

9.	· · /		Explain the detection process of NQR spectroscopy. Calculate the frequencies of transition and energies associated with										5	
		.1		• •	2	-				-	3			

the transition for a nuclei having spin
$$I = \frac{3}{2}$$
.

4

(c) Describe CW oscillator with proper block diagram.

10. (a)	Discuss magnetic hyperfine interaction in Mössbauer spectroscopy.	
		6
(b)	Describe X-ray photoelectron spectroscopy.	5
(c)	Calculate the energy and frequency of transition associated with the	
	transition for a nuclei having spin $I=1$.	3