2022

M.Sc.

Third Semester DISCIPLINE SPECIFIC ELECTIVE – 02 MATHEMATICS

Course Code: MMAD 3.21 (Tensor Analysis & Riemannian Geometry)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

(Symbols have their usual meaning.)

UNIT-I

- 1. (a) If A_r^{pq} and B_r^{pq} are tensors, then prove that their sum and difference are tensors. Also prove that the tensor product of the tensors of type (r,s) and (r',s') is a tensor of type (r+r',s+s'). 3+3=6
 - (b) Define inner product and show that the inner product of the tensors A_r^p and B_t^{qs} is a tensor of rank three. 4
 - (c) If A^{ij} and A_{ij} are components of symmetric relative tensors of weight w, then show that $2 \times 2=4$

(i)
$$\left| \overline{A}^{ij} \right| = \left| A^{ij} \right| \cdot \left| \frac{\partial x}{\partial \overline{x}} \right|^{w-2}$$

(ii) $\left| \overline{A}_{ij} \right| = \left| A_{ij} \right| \cdot \left| \frac{\partial x}{\partial \overline{x}} \right|^{w+2}$

- 2. (a) Define relative tensor, relative vector and relative scalar. Prove that the equation of transformation of a relative tensor possess the group property. 1+1+1+2=5
 - (b) Prove that the set of n^3 functions A^{ijk} form the components of a tensor if $A^{ijk}B^p_{ij} = C^{pk}$ provided that B^p_{ij} is an arbitrary tensor and C^{pk} a tensor What happens if B^p is summatrical in i and $i^2 = 4 \pm 1$.

 C^{pk} a tensor. What happens if B_{ij}^{p} is symmetrical in *i* and *j*? 4+1=5

(c) If A^i is an arbitrary contravariant vector and $C_{ij}A^iA^j$ is an invariant, Show that $C_{ij} + C_{ji}$ is a covariant tensor of the second order. 4

UNIT-II

3. (a) Show that (i) $g_{ii}dx^i dx^j$ is an invariant. 1 (ii) the magnitude of any vector \overline{u} is zero if the projections of a \overline{u} on e_{h1} are all zero. 3 (b) If θ is the angle between two vectors \overline{u} and \overline{v} at a point O of a Riemannian V_n , then find the value of $\cos \theta$. Also, find the angle between two coordinate curves. 3+2=5(c) Find the metric of a Euclidean space referred to the cylindrical coordinates. 5 4. (a) Prove that an arbitrary V_n does not admit an *n*-ply orthogonal system of hypersurfaces. 4 (b) Define Euclidean space and show that the condition that a V_n be immersible in a S_m is that $m \ge \frac{n}{2}(n+1)$. 1+4=5(c) Calculate the quantities g^{ij} for a V_3 whose fundamental form in coordinates u, v, w is

 $a du^{2} + b dv^{2} + c dw^{2} + 2f dv dw + 2g dw du + 2h du dv$ 5

UNIT-III

- 5. (a) Prove that
 - (i) the Christoffel symbols [jk,i] and $\begin{cases} i \\ jk \end{cases}$ are symmetric in j and k.

(ii)
$$[ij,k] + [jk,i] = \partial_j g_{ki}$$
 and $\frac{\partial gik}{\partial x^j} = -g^{hk} \begin{cases} i \\ hj \end{cases} - g^{hi} \begin{cases} k \\ hj \end{cases}$ 3

- (b) Obtain covariant derivative of a covariant vector w.r.t. the fundamental tensor g_{ij} .
- (c) Find the Christoffel symbols of first and second kind for the V_2 with line element $ds^2 = a^2 (dx^1)^2 + a^2 \sin^2 x^1 (dx^2)^2$, *a* is a constant. 5

4

- 6. (a) Show that the covariant derivative of a second rank mixed tensor is a tensor of rank three. 8
 - (b) If A_{ij} is the curl of a covariant vector, prove that

$$A_{ij,k} + A_{jk,i} + A_{ki,j} = 0$$
 and that this is equivalent to

$$\frac{\partial A_{ij}}{\partial x^k} + \frac{\partial A_{jk}}{\partial x^i} + \frac{\partial A_{ki}}{\partial x^j} = 0$$

$$6$$

UNIT-IV

- 7. (a) Define curvature of a curve and principal normal. 3
 - (b) Prove the necessary and sufficient condition that a system of coordinates be geodesic with pole at P_0 are that their second covariant derivatives with respect to the metric of the space all vanish to P_0 .
 - (c) Show that the geodesics are straight lines in S_n , the Euclidean space of *n* dimensions, and also determine the distance formula in S_n . 7
- 8. (a) Find the necessary and sufficient condition for a vector v^i of variable magnitude to suffer a parallel displacement along the curve C. 10
 - (b) Prove that the angle between any two vectors is the same whether it is calculated w.r.t. V_n or V_m . 4

UNIT-V

9.	(a) Obtain the expression for Riemannian symbol of first kind.	4
	(b) State and prove the symmetric property and differential pro-	operty of
	$R_{\scriptscriptstyle hijk}$.	2+3=5
	(c) Show that every V_{2} is an Einstein space.	5

10. (a) For a V_2 referred to an orthogonal system of parametric curves, show that $R_{12} = 0$, $R_{11}g_{22} = R_{22}g_{11} = R_{1221}$.

$$R = g^{ij}R_{ij} = \frac{2R_{1221}}{g_{11}g_{22}}, \text{ consequently } R_{ij} = \frac{1}{2}Rg_{ij} \qquad 6$$

- (b) Define curl of a congruence and show that if a congruence satisfies two of the following conditions, it will satisfy the third: 8
 - (i) that it will be a normal congruence
 - (ii) that it be a geodesic congruence
 - (iii) that it be an irrotational