2022 M.Sc. **Third Semester** CORE - 10**MATHEMATICS** Course Code: MMAC 3.21 (Topology)

Total Mark: 70 Time: 3 hours

Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a)	Show that if \mathcal{B} be a basis for topology on X , then the collection	
		$\mathcal{B}' = \{B \cap Y : B \in \mathcal{B}\} \text{ is a basis for subspace topology on } Y.$	5
	(b)	If τ and τ' are topologies on X and τ' is strictly finer than τ , what can you say about the corresponding subspace topologies on the	t
		subset <i>Y</i> of <i>X</i> ?	5
	(c)	Let <i>Y</i> be a subspace of <i>X</i> . Let <i>A</i> be a subset of <i>Y</i> . Let \overline{A} in <i>X</i> . Then prove that the closure of <i>A</i> in <i>Y</i> equals $\overline{A} \cap Y$.	, 4
		1 1	
2.	(a)	Show that if \mathcal{A} is a basis for a topology on X , then the topology generated by \mathcal{A} equals the intersection of all topologies on X that	
		contain \mathcal{A} .	5
	(b)	Are lower limit topology and standard topology on j comparable?	5
		Justify.	2
	(c)	Show that a subspace of a Hausdorff topological space is Hausdorf	f.
			4

UNIT-II

- 3. (a) Let X and X' denote a single set in the two topologies τ and τ' , respectively. Let $i: X' \to X$ be the identity function.
 - (i) Show that *i* is continuous $\Leftrightarrow \tau'$ is finer than τ . 3 3
 - (ii) Show that *i* is a homeomorphism $\Leftrightarrow \tau = \tau'$.

(b) Define the quotient topology. Let $A = \{a_1, a_2, a_3\}$ and p: A is defined as follows:

$$p(x) = \begin{cases} a_1 & \text{if } x > 0 \\ a_2 & \text{if } x < 0 \\ a_3 & \text{if } x = 0 \end{cases}$$

Obtain the quotient topology on A induced by p. 4

5

4

3

- (c) Let $p: X \to Y$ be an open map and let A be an open subset of X. Prove that the map $q: A \to p(A)$ obtained by restricting p is also an open map. 4
- 4. (a) Show that the subspace (a,b) of i is homeomorphic with (0,1).

- (c) Let $\{A_{\alpha}\}$ be a collection of subsets of X; let $X = \bigcup A_{\alpha}$. Let $g: X \to Y$; suppose that $g \mid A_{\alpha}$ is continuous for each α .
 - (i) Show that if the collection $\{A_{\alpha}\}$ is finite and each set A_{α} is closed, then g is continuous.
 - (ii) Find an example where the collection $\{A_{\alpha}\}$ is countable and each A_{α} is closed, but g is not continuous. 2

UNIT-III

- 5. (a) Prove that the image of a connected space under a continuous map is connected.
 - (b) Define a path in a topological space X. When is a space X called path connected? Show that a path connected topological space X is connected. 1+1+4=6
 - (c) Let $\{A_{\alpha}\}$ be a collection of connected subsets of *X*; let *A* be a connected subset of *X*. Show that if $A \cap A_{\alpha} \neq \emptyset$ for every α , then $A \cup (\cup A_{\alpha})$ is connected.
- 6. (a) Define a linear continuum. Prove that if L is a linear continuum in the order topology, then L is connected. 2+5=7

- (b) Is the space (i, τ_l) connected? Justify your answer.
- (c) If X is a topological space, each component of X lies in a component of X. If X is locally path connected, then prove that the components and the path components of X are the same. 5

2

UNIT-IV

7.	(a)	Prove that every compact subset of a Hausdorff topological space	is
		closed.	5
	(b)	Show that a finite union of compact sets is compact.	4
	(c)	Let <i>X</i> be a compact topological space and <i>Y</i> an ordered set in the order topology. If $f: X \to Y$ is continuous, then show that there exists a point <i>p</i> such that $f(x) \le f(p)$ for every $x \in X$.	5
8.	(a) (b)	Prove that every closed interval in i is compact. Prove that the product of two compact spaces is compact.	5 5
	(c)	Show that the rationals a are not locally compact.	4

UNIT-V

9.	(a)	Let X be a space satisfying the first countability axiom. Prove that	t the
		point x belongs to the closure A of the subset A of X if and only	if
		there is a sequence of points of A converging to x .	5
	(b)	Show that if X is normal, every pair of disjoint closed sets have	
		neighbourhoods whose closure is disjoint.	4
	(c)	Prove that every metrizable space is normal.	5
10	. (a)	Prove the following: $3\frac{1}{2}$	<2=7
		(i) A subspace of a regular space is regular space.	
		(ii) A product of regular spaces is a regular space.	
	(b)	Show that every locally compact Hausdorff space is regular.	4
	(c)	The topological space i_{l} is first countable but not second counta	able.
		Justify.	3