2022 M.Sc.

Third Semester

CORE - 09

MATHEMATICS

Course Code: MMAC 3.11 (Numerical Analysis)

Total Mark: 70 Pass Mark: 28

Time: 3 hours

Answer five questions, taking one from each unit.

UNIT-I

- (a) Derive the Regula-Falsi iteration formula.
 (b) Discuss the rate of convergence of Newton-Raphson method.
 (c) Determine a real root of tan x = x using secant method by taking appropriate initial value.
- 2. (a) Define relative error? If $f(x, y, z) = 3\frac{xy}{z^3}$ and errors in x, y, z be 0.001. Compute the maximum relative error in f(x, y, z) when x = y = z = 1.
 - (b) Perform three iterations of the Chebyshev's method to find the approximate value of $\frac{1}{7}$. (take $x_o = 0.1$)
 - (c) Find the root of the equation $f(x) \equiv x^4 x 10 = 0$ using multipoint iteration method. (perform four iterations)

UNIT-II

3. (a) Find the inverse of the matrix using Gauss-Jordan method. 7

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

(b) What is Doolittle's & Crout's method? Solve the system of equation by triangularization method. 1+6=7

$$4x + y + z = 4$$
$$x + 4y - 2z = 4$$
$$3x + 2y - 4z = 6$$

4. (a) Find the inverse of the matrix by partition method.

$$\begin{bmatrix} 3 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 2 \end{bmatrix}$$

(b) Find the largest eigenvalue and its corresponding eigenvector of the matrix correct to 3 decimal places using power method. 7

7

$$\begin{bmatrix} 4 & 1 & 0 \\ 1 & 20 & 1 \\ 0 & 1 & 4 \end{bmatrix}$$

UNIT-III

5. (a) Construct the Hermite interpolation that fits the data and interpolate at x = 0.5 and x = 1.5. 8

X	f(x)	f'(x)
0	4	-5
1	-6	-14
2	-22	-17

(b) Obtain the piecewise cubic interpolating polynomials for the function define by the given data.

X	-5	-4	-2	0	1	3	4
f(x)	215	-94	-334	-350	-344	-269	-94

Hence interpolate at x = -3.0 and x = 2.0.

6. (a) For the data f(10) = 1.1585, f(20) = 1.2817, f(30) = 1.3660. 6

Construct the Lagrange interpolating and calculate f(15).

(b) Use Sterling's formula to find y(35), given that y(20) = 215, y(30) = 439, y(40) = 346, y(50) = 247.

(c) Prove the following relation:

1+1=2

(i)
$$\delta = \Delta E^{-\frac{1}{2}} = \nabla E^{\frac{1}{2}}$$

(ii)
$$\mu^2 = 1 + \frac{1}{4}\delta^2$$

UNIT-IV

7. (a) Find the value of f'(9) and f''(9) for the given data f(6) = 1.556, f(7) = 1.690, f(9) = 1.908, f(12) = 2.158.

(b) The function $y = \sin x$ is tabulated below:

4

7

x	0.7	0.8	0.9	1.0	1.1	1.2	1.3
y	0.644218	0.717356	0.783327	0.841471	0.891207	0.932039	0.963558

Find the derivative at the point x = 1.3 and compute its actual error.

(c) Find f''(5) using divided difference formula for the data: 6 f(3) = -13, f(5) = 23, f(11) = 899, f(27) = 17315,f(34) = 35606

8. (a) Using Simpson's 1/3 rule evaluate $I = \int_0^1 \frac{dx}{x^2 + 6x + 10}$ with 4 & 8 subintervals.

(b) Evaluate $\int_0^2 \frac{x^2 + 2x + 1}{1 + (x + 1)^4} dx$ by Gauss-Legendre three point rule. 7

UNIT-V

9. (a) Consider the initial value problem $\frac{dy}{dx} = x(y+1), y(0) = 0$,

Compute y(0.5) with h = 0.1 using Euler method. If the exact solution is $y = -1 + 2e^{x^2/2}$. Find the magnitude of actual errors.

- (b) Solve the initial value problem $\frac{dy}{dx} = 2x + 3y$, y(0) = 1, using Taylor series method with h = 0.2 over the interval [0,1]. Compare with the exact solution.
- 10. (a) Reduce the second order inital value problem $y'' + 3y' + 2y = e^{2t}$, with y(0) = 1, y'(0) = 1 to a system of first order inital value problems and find the value of y(1), y'(1) (taking h = 0.5) using Runge-Kutta method of fourth order.
 - (b) Determine the value of y(0.4) by Milne-Simpson method given that $y' = xy + y^2$, y(0) = 1 with h = 0.1.