2022 M.Sc. First Semester CORE - 04MATHEMATICS Course Code: MMAC 1.41 (Abstract Algebra)

Total Mark: 70 Time: 3 hours

Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

- 1. (a) If G is a group such that $(ab)^n = a^n b^n$ for 3 consecutive integers n, for all $a, b \in G$, show that G is abelian. Is the converse true? Justify. 5
 - (b) Let G be a group of order n and let S be a subgroup of G. Determine the number of distinct right cosets of S in G. Justify. 4
 - (c) Let G and H be groups and let $\phi: G \to H$ be a homomorphism. If $a \in G$ is of finite order, prove that $\phi(a) \in H$ is of finite order. Also, prove that the order of $\phi(a)$ divides the order of a. If $\phi(a) \in H$ is of finite order, does it imply that $a \in G$ is of finite order? Justify. 5
- 2. (a) Let $G = \langle g \rangle$ be a cyclic group of order *n*. For any $k \in \mathbb{N}$, prove

that
$$O(g^k) = \frac{O(g)}{\gcd(n,k)}$$
. Determine how many elements of *G* have
order *n*.

order *n*.

- (b) Let N be a subgroup of a group G. Prove that the following statements are equivalent:
 - (i) N is a normal subgroup of G
 - (ii) $gNg^{-1} = N$ for all $g \in G$
 - (iii) Product of two right cosets of N in G is again a right coset of Nin G. 3

(c) Show that every subgroup of an abelian group is normal. Is the converse true? Justify.

UNIT-II

5

3.	(a) Let G be a group and H a subgroup of G. Let S denote the set of all right cosets of H in G. Can you define a group action of G on S?
	Justify. 5
	(b) If $O(G)$ is pq where p and q are distinct prime numbers and if G has
	a normal subgroup of order p and a normal subgroup of order q ,
	prove that G is cyclic. 5
	(c) Find the conjugate of $(1 \ 2 \ \dots \ n)$ in S_n .
4.	(a) If p is a prime number and p divides $O(G)$, then prove that p has an
	element of order <i>p</i> . 7
	(b) Prove that if P is the only Sylow p-subgroup of G, then P is normal in
	G. 4
	(a) D ₁ = $\frac{1}{2}$ + $\frac{1}{2}$ = 1

(c) Prove that any group of order p^2 is abelian, where p is a prime. 3

UNIT-III

5.	(a) Prove that any group of order 72 cannot be simple.	6
	(b) Find the number of conjugates of $(1 \ 2)(3 \ 4)$ in S_n for $n \ge 4$. (c) Let G be a group and $T = G \times G$. Show that	4
	$D = \{(g,g) \in G \times G g \in G\}$ is group isomorphic to G.	4
6.	 (a) Let G be a group and m be a positive integer such that m divides O(G). Does there always exist a subgroup of order m? Justify. (b) Let H be a subgroup of a group G. Prove that the number of 	6
	conjugates of <i>H</i> in <i>G</i> is $O\left(\frac{G}{N(H)}\right)$ where <i>N</i> (<i>H</i>) denotes the	
	normalizer of H.	4
	(c) Show that there is no simple group of order pqr , where p, q and r	

(c) Show that there is no simple group of order *pqr*, where *p*, *q* and *r* are distinct primes.

UNIT-IV

- 7. (a) Let *R* be a ring such that $x^2 = x$ for all $x \in R$. Prove that *R* is a commutative ring. Show that the converse need not hold.
 - (b) Let Z be the ring of integers and let I be an ideal of Z. Show that $I = \{na | n \in \mathbb{Z}\}\$ for a fixed $a \in \mathbb{Z}$, that is, show that I is the set of all integer multiples of a fixed integer a. What values of a is necessary and sufficient for I to be maximal in Z? Justify. 6

4

7

5

- (c) Let $\phi: R \to R'$ be a ring homomorphism. If *R* is a field, prove that either ϕ is an isomorphism or ϕ maps every element of *R* to the additive identity (zero element) of *R'*.
- 8. (a) Let *R* be an integral domain and let the characteristic of *R* be a finite $n \in \mathbb{N}$. Show that *n* is a prime number. Provide an example of an integral domain which has an infinite number of elements but has finite characteristic. 3
 - (b) Let R be a commutative ring with unity and let I be an ideal of R.

Prove that I is a prime ideal if and only if $\frac{R}{I}$ is an integral domain. 4

(c) Prove that every PID is a UFD.

UNIT-V

- 9. (a) If the primitive polynomial f(x) can be factored as the product of two polynomials having rational coefficients, prove that f(x) can be factored as the product of two primitive polynomials. Does the result hold for f(x) not primitive? Justify. 6
 - (b) Let R be an integral domain (with unity) and let f(x), $g(x) \in R[x]$.

Prove that $\deg \{f(x)g(x)\} = \deg f(x) + \deg g(x)$.

Does the result hold if *R* is a commutative ring with unity but not an integral domain? Justify.

(c) Show that the polynomial $f(x) = 2x^2 + 4$ is irreducible over \mathbb{R} but reducible over \mathbb{C} .

- 10. (a) If R is an integral domain, show that R[x] is also an integral domain. If R is a field, is R[x] also a field? Justify. If R is a commutative ring with unity, is R[x] also a commutative ring with unity? Justify. 7
 - (b) Let F be a field and f(x), g(x) ∈ F[x] with g(x) ≠ 0. Prove that there exist unique polynomials q(x), r(x) ∈ F[x] such that f(x) = g(x) q(x) + r(x), where either r(x) = 0 or deg r(x) < deg g(x).
 - (c) If *p* is a prime number, prove that the polynomial $x^n p$ is irreducible over \mathbb{Q} .