2022 M.Sc. First Semester CORE – 03 MATHEMATICS Course Code: MMAC 1.31 (Real Analysis)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(b) Prove that the Cartesian product of two countable sets is countable.	5				
2.	 (a) Is i compact? Justify. (b) Prove/disprove: {1/n n ∈ ¥} is open in (i, d), where d is the usual metric space. (c) Prove c = 2^{ℵ₀}, where c is the cardinality of i and ℵ₀ is the 	5				
UNIT-II						
3.	(a) Let (x_n) be a sequence in a metric space (X,d) and let $x \in X$. If (x_n) converges to x and (x_n) has infinitely many distinct values, then prove that x is a limit point of the range of (x_n) .	5				

(b) Prove/disprove: The series $\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \cdots$ is convergent. 3

(c) If
$$\sum_{n=0}^{\infty} a_n$$
 converges absolutely, $\sum_{n=0}^{\infty} a_n = A$, $\sum_{n=0}^{\infty} b_n = B$, and
 $c_n = \sum_{k=0}^{n} a_k b_{n-k}$, $n = 0, 1, 2, ...$, then prove that $\sum_{n=0}^{\infty} c_n = AB$. 6

5

5

4

7

7

7

- 4. (a) Let (X,d) be a metric space, $A \subseteq X, x \in A'$. Show that there exists a sequence (x_n) in A which converges to x.
 - (b) When is $\sum \frac{1}{n^p}$ convergent? Justify.
 - (c) Show that the product of two convergent series may diverge.

UNIT-III

5.	(a)	For metric spaces X and Y, prove that a function f	is c	ontinuous from
		X to Y if and only if for every open set E in Y, f^{\leftarrow}	(E)) is open in X.

- (b) State and prove the generalised mean value theorem. 7
- 6. (a) Prove/disprove: If X is compact and $f: X \to i$ is continuous, then f(X) is compact. 7
 - (b) Give an example each of the following:
 - (i) A function $f: A \to B$ which is bijective such that f is differentiable on A but f^{-1} is not differentiable on B.
 - (ii) A function f which is differentiable at a point x but f' is not differentiable at x.

UNIT-IV

- 7. (a) $f:[a,b] \rightarrow_i$ is bounded and P, P^* are partitions of [a,b] such that P^* is finer than P. Prove that $L(P,f) \leq L(P^*,f)$. 7
 - (b) If f is continuous on $[a,b] \subset i$ and f is real-valued, prove that f is integrable. Is the converse true? Justify. 7
- 8. (a) State and prove a criterion of integrability.

(b) If f and g are integrable on $[a,b] \subset i$, then prove that f+g and fg are also integrable. 7

UNIT-V

- 9. (a) State and prove the Cauchy criterion for uniform convergence. 7
 - (b) Let $f_n(x) = \frac{x}{1+nx^2}, x \in [n, n] \in \mathbb{Y}$ Discuss the convergence of (f_n) and (f'_n) . 7

10. (a) Discuss the convergence of $\left(\frac{nx}{1+n^2x^2}\right)$ on the intervals $[a,\infty[$ and $[0,\infty[$, where a > 0. 7

(b) Let (f_n) and (g_n) be sequences of bounded functions on A that converge uniformly on A to f and g respectively. Show that (f_ng_n) converges uniformly on A to fg. 7