2022

M.Sc.

First Semester CORE – 01

MATHEMATICS

Course Code: MMAC 1.11 (Ordinary Differential Equations)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1. (a) Let ϕ be any solution of $L(y) = y'' + a_1 y' + a_2 y = 0$ on an interval *I* containing a point x_0 . Then for all *x* in *I* prove that $\|\phi(x)\|e^{-k|x-x_0|} \le \|\phi(x)\| \le \|\phi(x)\|e^{k|x-x_0|}$ where $\|\phi(x)\| = [|\phi(x)|^2 + |\phi'(x)|^2]^{\frac{1}{2}}, \ k = 1 + |a_1| + |a_2|.$ 6 (b) Consider the constant coefficient equation $L(y) = y'' + a_1 y' + a_2 y = 0$. Let ϕ_1 be the solution satisfying

 $\phi_1(x_0) = 1, \phi_1'(x_0) = 0$, and let ϕ_2 be the solution satisfying $\phi_2(x_0) = 0, \phi_2'(x_0) = 1$. And let ϕ be the solution satisfying $\phi(x_0) = \alpha, \phi'(x_0) = \beta$, than show that $\phi(x) = \alpha \phi_1(x) + \beta \phi_2(x)$ for all x.

(c) (i) Show that the function \$\phi_1\$, \$\phi_2\$ defined by \$\phi_1\$(x) = x²,
\$\phi_2\$(x) = x |x| are linearly independent for -∞ < x < ∞.
(ii) Compete the Wronskian of these functions.

- 2. (a) If ϕ_1 , ϕ_2 are two solutions of L(y) = 0 on an interval *I* containing a point x_0 , then show that $W(\phi_1, \phi_2)(x) = e^{-a_1(x-x_0)}W(\phi_1, \phi_2)(x_0)$. 4

- (b) Determine all complex numbers *l* for which the problem -y'' = ly, y(0) = 0, y(1) = 0 has a non-trivial solution, and compute such solution for each of these *l*. 5
- (c) Find all the solution of $y'' + y = 2 \sin x \sin 2x$.

UNIT-II

3. (a) Find two linearly independent solutions of the equation

$$(3x-1)^{2} y'' + 4(9x-3) y' - 36y = 0 \text{ for } x > \frac{1}{3}.$$

5

4

- (b) If $\phi_1, \phi_2, \phi_3...\phi_n$ are *n* solutions of L(y) = 0 on an interval *I*, then prove that they are linearly independent if and only if $W(\phi_1 \cdots \phi_n)(x) \neq 0$ for all x in *I*. 5
- (c) Let ϕ be real valued non-trivial solution of $y'' + \alpha(x)y = 0$ on a < x < b and let ψ be a real valued solution of $y'' + \beta(x)y = 0$ on a < x < b. Here α, β are real valued continuous functions. Suppose that $\beta(x) > \alpha(x), (a < x < b)$. Then show that if x_1 and x_2 are successive zeros of ϕ on a < x < b, then ψ must vanish at some point $\xi, x_1 < \xi < x_2$.
- 4. (a) State and prove the uniqueness theorem related to initial value problem of linear equation with variable coefficients for the homogeneous equations.
 - (b) Let $\phi_1, \phi_2 \dots \phi_n$ be *n* solutions of L(y) = 0 on the interval *I*, and let x_0 be any point in *I*. Then show that $W(\phi_1, \phi_2 \dots \phi_n)(x) = \exp\left[-\int_{-\infty}^{x} a_1(t) dt\right] W(\phi_1, \phi_2 \dots \phi_n)(x_0) = 6$

$$V(\phi_1, \phi_2 \cdots \phi_n)(x) = \exp\left[-\int_{x_0}^x a_1(t)dt\right] W(\phi_1, \phi_2 \cdots \phi_n)(x_0) \qquad 6$$
onsider the equation $L(y) = y'' + a_1(x)y' + a_2(x)y = 0$ where

(c) Consider the equation $L(y) = y'' + a_1(x)y' + a_2(x)y = 0$ where a_1, a_2 are continuous on some interval *I*. Show that a_1, a_2 are uniquely determined by any basis ϕ_1, ϕ_2 for the solution of L(y) = 0.

UNIT-III

5. (a) Find all the solutions of the equation $y'' - \frac{2}{x^2} = x$, $(0 < x < \infty)$. 6

- (b) Find the solution of $y'' + (x-1)^2 y' (x-1) y = 0$ in the form $\phi(x) = \sum_{k=0}^{\infty} c_k (x-1)^k$, which satisfies $\phi(1) = 1$, $\phi'(1) = 0$. 8
- 6. (a) Show that there are constants $\alpha_0, \alpha_1 \cdots \alpha_n$ such that $x^n = \alpha_0 P_0(x) + \alpha_1 P_1(x) + \dots + \alpha_n P_n(x)$, where $P_n(x)$ is the n^{th} Legendre polynomial.
 - (b) If $P_n(x)$ is n^{th} Legendre polynomial, then prove that

$$\int_{-1}^{1} P_n^2(x) = \frac{2}{(2n+1)}.$$
5

5

4

4

(c) Verify that the function Q_1 defined by $Q_1(x) = \frac{x}{2} \log\left(\frac{1+x}{1-x}\right) - 1$, (|x| < 1) is a solution of the Legendre equation where $\alpha = 1$.

UNIT-IV

- 7. (a) Let M, N be two real valued function which has continuous first order partial derivatives on some rectangle R: |x x₀| ≤ a, |y y₀| ≤ b. Then show that the equation

 M(x, y) + N(x, y) y' = 0 is exact in R if, and only if, ∂M/∂y = ∂N/∂x in R.
 (b) Find any integrating factor of the following equation and solve it, cos x cos y dx 2 sin x sin y dy = 0
 - (c) Consider the problem $y' = 1 + y^2$, y(0) = 0.
 - (i) Using the separation of variables, find the solution of ϕ of this problem.
 - (ii) Show that all the successive approximations $\phi_o, \phi_1, \phi_2...$ exist for all real *x*.

(iii) Show that
$$\phi_k(x) \rightarrow \phi(x)$$
 for each x satisfying $|x| \le \frac{1}{2}$.

- 8. (a) Consider the equation M(x, y)dx + N(x, y)dy = 0, where M, Nhave continuous first order partial derivatives of some rectangle R. Show that 5
 - (i) the given equation has an integrating factor *u*, which is a function of *x* alone, then $p = \frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right)$ is a continuous function of *x* alone.
 - (ii) If p is continuous and independent of y then $u(x) = e^{P(x)}$, where P' = p.
 - (b) Show that the successive approximation defined by
 - $\phi_{k+1}(x) = y_0 + \int_{x_0}^x f(t, \phi_k(t)) dt, \phi_0(x) = y_0 \text{ exist as continuous}$ function on $I: |x - x_0| \le a = \min\left[a, \frac{b}{M}\right]$, and $(x, \phi_k(x))$ is in R for x in I. And ϕ_k satisfy $|\phi_k(x) - y_0| \le M |x - x_0|$ for all x in I.
 - (c) Consider the equation $y' = f(x) p(\cos y) + g(x)q(\sin y)$ where *f*, *g* are continuous for all real *x*, and *p*, *q* are polynomials. Show that every initial value problem for this equation has a solution which exist for all real *x*. 4

UNIT-V

- 9. (a) Find all the solution of the equation x²y" 5xy' + 9y = x² for x > 0.
 7
 (b) Find the singular point and compute the indicial polynomial for all equation x²y" + (sin x) y' + (cos x) y = 0.
 7
- 10. (a) Solve the following equation in series $2x^{2}y'' - xy' + (1 - x^{2})y = 0.$ 10
 - (b) Show that $x = \infty$ is a regular singular point of $x^2y'' + 4xy' + 2y = 0.$ 4