2022 B.A./B.Sc. First Semester GENERIC ELECTIVE – 1 MATHEMATICS Course Code: MAG 1.11 (Calculus)

Total Mark: 70 Time: 3 hours Pass Mark: 28

4

Answer five questions, taking one from each unit.

UNIT-I

1. (a) If
$$y = \frac{x}{x^2 + a^2}$$
, find y_n by partial fraction method.
(b) If $y = e^{ax} \sin(bx + c)$, show that
 $y_n = (a^2 + b^2)^{\frac{n}{2}} e^{ax} \sin\left(bx + c + n \tan^{-1} \frac{b}{a}\right)$.
(c) Separate the intervals in which the polynomial

c) Separate the intervals in which the polynomial $f(x) = x^3 + 8x^2 + 5x - 2$ is increasing or decreasing using first derivative test.

2. (a) If
$$y = x \log\left(\frac{x-1}{x+1}\right)$$
, prove that
 $y_n = (-1)^n (n-2)! \left[\frac{(x-n)}{(x-1)^n} - \frac{(x+n)}{(x+1)^n}\right].$
5

(b) If $y = a \cos(\log x) + b \sin(\log x)$, x > 0, show that $x^2 y_{n+2} + (2n+1)xy_{n+1} + (n^2+1)y_n = 0$ using Leibnitz's theorem. 5

- (c) Given the position $s(t) = 2t^2 5t + 2, 0 \le t \le 3$ of a body moving on a coordinate line with *s* in meters and *t* in seconds, find
 - (i) displacement and average velocity 2
 - (ii) speed and acceleration at the endpoints of the interval 2

UNIT-II

3.	(a) State and prove Lagrange's mean value theorem. (b) Find the asymptotes of $xy^2 - y^2 - x^3 = 0$.	1+4=5
	(b) Find the asymptotes of $xy - y - x = 0$.	5
	(c) Evaluate $\lim_{x\to 0} \left(\frac{\sin x}{x}\right)^{\frac{1}{x}}$.	4
4.	(a) By using mean value theorem, show that	
	$\frac{v-u}{1+v^2} < \tan^{-1}v - \tan^{-1}u < \frac{v-u}{1+u^2}, \ 0 < u < v \text{ and deduce}$ $\frac{\pi}{4} + \frac{3}{25} < \tan^{-1}\frac{4}{3} < \frac{\pi}{4} + \frac{1}{6}.$	5
	(b) Verify Rolle's theorem for the function $f(x) = x(x+3)e^{-\frac{x}{2}}$ in	ı
	[-3,0].	5
	(c) Use mean value theorem in making numerical approximation of	of
	$(28)^{\frac{1}{3}}$.	4

UNIT-III

5.	(a)	State and prove Maclaurin's theorem with Lagrange's form of	
		remainder.	5
	(b)	Expand $\sin x$ in a finite series in powers of x with remainder in	
		Lagrange's form.	5
	(c)	Find $\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right)$ using Taylor series.	4
6.	(a)	Use Maclaurin's theorem to find the expansion of $\log(1+e^x)$ in ascending powers of x to the terms containing x^4 .	5
	(b)	Show that $\lim_{h \to 0} \theta = \frac{1}{n+1}$, where θ is given by	

$$f(a+h) = f(a) + hf'(a) + \dots + \frac{h^{n-1}}{(n-1)!} f^{n-1}(a) + \frac{h^n}{n!} f^n(a+\theta h),$$

provided that $f^{n+1}(x)$ is continuous at $a, f^{n+1}(a) \neq 0.$ 5

(c) Evaluate
$$\lim_{x \to 0} \frac{\sin x - \tan x}{x^3}$$
 using Taylor series. 4

UNIT-IV

7. (a) If $I_n = \int_0^{\pi/2} \sin^n x \, dx$, where *n* is a positive integer greater than 1,

show that
$$I_n = \frac{n-1}{n} I_{n-2}$$
 and evaluate $\int_0^{\pi/2} \sin^5 x \, dx$. 5

(b) If *m* and *n* are positive integers, show that

$$\int_{0}^{\pi} \cos mx \sin nx \, dx = \begin{cases} \frac{2n}{n^2 - m^2}, \text{ when } (n - m) \text{ is odd} \\ 0, \text{ when } (n - m) \text{ is even} \end{cases}$$
5

(c) Show that
$$\int_0^{\pi} \frac{dx}{3 + 2\sin x + \cos x} = \frac{\pi}{4}$$
.

8. (a) If *m*, *n* are positive integers, then prove that

$$\int_{0}^{1} x^{m-1} (1-x)^{n-1} dx = \frac{1 \cdot 2 \cdot 3 \dots (m-1)}{n(n+1) \dots (n+m-1)} .$$
5

(b) Show
$$\int_0^\infty e^{-ax} x^n dx = \frac{n!}{a^{n+1}}$$
 where *a* is a positive quantity and *n* is a positive integer. 5

(c) Evaluate
$$\int \sqrt{\frac{a+x}{a-x}} dx$$
. 4

UNIT-V

- 9. (a) Use cylindrical shell to find the volume of the solid region generated when the region *R* in the first quadrant enclosed between y=x and $y=x^2$ is revolved about the *y*-axis. 5
 - (b) Find the area of the surface generated when the arc $y = x^2$ between x = 0 and $x = \sqrt{2}$ is revolved about the y-axis. 4

(c) Show that the volume of the solid formed by the rotation of ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ about the major axis is $\frac{4}{3}\pi ab^2$ and about the minor axis is $\frac{4}{3}\pi a^2b$.

10. (a)	Show that the circumference of a circle with radius r is $2\pi r$.	5
(b)	Find the volume generated by revolving the cardioid	
	$r = a(1 - \cos \theta)$ about the initial line.	5
(c)	Find the surface of the sphere generated by the circle $x^2 + y^2 = a^2$	
	about the <i>x</i> -axis.	4