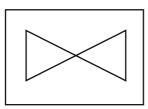
2022

B.A./B.Sc.

Fifth Semester DISCIPLINE SPECIFIC ELECTIVE – 2

MATHEMATICS


Course Code: MAD 5.21 (Boolean Algebra & Automata Theory)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

- (a) Define poset with example.
 (b) Draw all possible ordered sets with five elements.
 (c) Draw the diagram of M₃ ⊕ M₄, 2⁴, 1 ⊕ (1 ∪ 1)
 (d) Prove that two finite ordered set P & Q are order-isomorphic if and only if they can be drawn with identical diagram.
- 2. (a) Draw and label a diagram of the ordered sets of down sets for the ordered set P given by the diagram. 6

(b) Define order-preserving with example. Let φ: P → Q and ψ: Q → R be order -preserving maps. Then show that the composite map (ψ ∘ φ) given by (ψ ∘ φ) (x) = ψ(φ(x)) for x ∈ P is also order-preserving. 1+2=3

(c) Let (L, \land, \lor) be a non-empty set equipped with two binary operations which satisfy the axioms of join and meet. Then, prove that $\forall a, b, c, d \in L$ $2^{\frac{1}{2}\times 2=5}$

(i)
$$a \le b \Rightarrow a \lor c \le b \lor c$$
 and $a \land c \le b \land c$

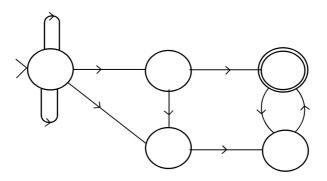
(ii) $a \le b$ and $c \le d \Longrightarrow a \lor c \le b \lor d$ and $a \land c \le b \land d$

UNIT-II

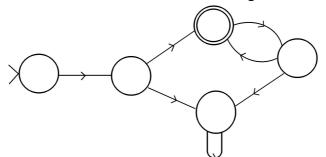
- 3. (a) State and prove De Morgan's law in Boolean algebra. 1+2=3
 - (b) Define sublattice. Give an example to show that the subset of a lattice L is a lattice on its own but not a sublattice of L. 1+2=3
 - (c) Define complemented lattice. Prove that in a distributive lattice, each element has at most one complement. 1+3=4
 - (d) Prove that direct product of Boolean algebra is a Boolean algebra.

4

4. (a) Define disjunctive and conjunctive normal form with examples.


1+1=2

- (b) Minimize the polynomial w'x'y'z + w'xy'z + wx'y'z + wx'yz' + wx'yz + wx'yz + wxyz' + wxyz using Quine-McCluskey method.
- (c) A committee of three judges deciding on the acceptance or rejection of a competitor in a game are provided with buzzers in which the push is to indicate acceptance. Design a circuit so that a bell will ring when there is a majority of vote for acceptance.


UNIT-III

- 5. (a) Define Kleene star of a language.
 (b) Find the regular expression and draw its finite automata for the given formal language.
 2×2=4
 - (i) $L = \{ w \in \{0,1\} * : w \text{ has even number of zeros} \}$
 - (ii) $L = \{ w \in \{0,1\}^* : |w| \text{ is divisible by 4} \}$

(c) Construct an equivalent deterministic finite automata (DFA) for the given non-deterministic finite automata (NFA).

6. (a) Find the regular expression for the language accepted by the deterministic finite automaton whose state diagram is

7

(b) Show that union of two regular language is regular.(c) State the pumping theorem for regular language. Show that

$$L = \{ww^{R} : w \in \{a, b\}^{*}\} \text{ is not a regular language.} \qquad 1+4=5$$

UNIT-IV

7. (a) Define linear and nonlinear grammar.1+1=2(b) Construct a PDA that accepts the language4 $L = \{w \in \{a, b\}^* : w \text{ has the same number of } a's \text{ and } b's \}$ (c) Prove that every regular language is a context free language.

(d) Construct a PDA for the given context free grammar $G = (V, \Sigma, R, S)$ where $V = \{S, a, b, c\}, \Sigma = \{a, b, c\},$ $R = \{S \rightarrow aSa, S \rightarrow bSb, S \rightarrow c\}$

4

6

- 8. (a) Define ambiguous grammar with example. 2
 - (b) Let G be a grammar with the rules R given by S→aB/bA, A→a/aS/bAA, B→b/bS/aBB
 Then, find the leftmost and rightmost derivation for the string aaabbabbba. Also, draw the parse tree.
 - (c) Show that $L = \{ww : w \in \{0,1\}^*\}$ is not a context free language. 6

UNIT-V

9.	(a)	Discuss the uses of Turing machine by giving an example along with sample computation.	ha 4
	(b)	Construct and draw a Turing machine that accepts the language	
		$L = \left\{ a^n b^n c^n : n \ge 0 \right\}$	5
	(c)	Construct a Turing machine which compute the multiplication function and trace the input $\# I^3 \# I^2 \#$	ion 4
10.	(a)	Define the following with example:3×3(i) Decidable(ii) Undecidable(iii) Post correspondence problem	=9
	(b)	Draw the left shifting standard machine.	2
	(c)	What do you mean by halting of Turing machine?	3