5

5

2022 B.A./B.Sc. Fifth Semester CORE – 11

MATHEMATICS

Course Code: MAC 5.11 (Multivariate Calculus)

Total Mark: 70 Pass Mark: 28

Time: 3 hours

Answer five questions, taking one from each unit.

UNIT-I

1. (a) Show that the function

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

is continuous at the origin.

(b) If
$$f(x, y) = x^2 y + e^x y^2$$
, find f_x and f_y .

(c) Show that the function 5

$$f(x,y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2}, & \text{if } x^2 + y^2 \neq 0\\ 0, & x = y = 0 \end{cases}$$

is differentiable at the origin.

2. (a) By using the definition of limit, show that

 $\lim_{(x,y)\to(0,0)} = \frac{x^2 + y^2}{xy}$ does not exist.

(b) By definition of partial derivatives, evaluate $f_x(2,0)$ and $f_y(1,-1)$ for the function $f(x,y) = 5 + 2xy - 3y^2 + x^2y$.

(c) By using chain rule, find $\frac{dw}{dt}$ for $w = xe^y + y \sin x$; x = t, $y = t^2$.

UNIT-II

- 3. (a) Find the points on the curve $x^2y = 2$ nearest to the origin.
 - (b) Find curl \vec{F} and div \vec{F} for $\vec{F}(x, y, z) = 2x^2z\hat{i} + 2xy^3\hat{j} + 3yz^2\hat{k}$. 5
 - (c) Let $\phi = x^2yz 4xyz^2$. Find the directional derivatives of ϕ at P(1,3,1) in the direction of $2\hat{i} \hat{j} 2\hat{k}$.
- 4. (a) Find the gradient of $\phi(x, y, z) = 3x^2y y^2z^2$ at the point (1, -2, -1).
 - (b) Find the tangent plane and normal line to the surface $x^2 + xyz z^3 = 1$ at the point P(1,1,1).

4

(c) Find the direction in which the function $f(x, y) = x^2 + \cos xy$ increases or decreases most rapidly at $P(1, \frac{\pi}{2})$.

UNIT-III

5. (a) Evaluate
$$\int_{-1}^{0} \int_{-1}^{1} (x+y+1) dx dy$$
 4

(b) Evaluate
$$\int_{1}^{2} \int_{y}^{y^{2}} dxdy$$
 5

(c) Evaluate
$$\int_{0}^{1} \int_{0}^{1-z} \int_{0}^{2} dx dy dz$$
 5

6. (a) Evaluate
$$\int_{0}^{2} \int_{0}^{x} y dx dy$$
 by changing into polar form. 5

(b) Change the order of integration
$$\int_{0}^{1} \int_{1}^{e^x} dx dy$$
.

(c) Evaluate
$$\int_{0}^{\pi} \int_{0}^{\pi} \int_{r}^{2\sin\phi} \rho^{2} \sin\phi d\rho d\phi d\theta$$
 5

UNIT-IV

- 7. (a) Let $A = (3x^2 + 6y)\hat{i} 14yz\hat{j} + 20xz^3\hat{k}$. Evaluate $\int_C Adr$ from
 - (0,0,0) to (1,1,1) along the curve $C: x = t, y = t^2, z = t^3$.
 - (b) Find the total work done in moving a particle in the force given by $\vec{F} = z\hat{i} + z\hat{j} + x\hat{k}$ along the helix C given $x = \cos t, y = \sin t, z = t$

by from
$$t = 0$$
 to $t = \frac{\pi}{2}$.

(c) Evaluate
$$\int_{0}^{\frac{\pi}{2}} (3\sin x\hat{i} + 2\cos x\hat{j})dx.$$

- 8. (a) Find the potential function f for the field $\vec{F} = x\hat{i} + y^2\hat{j} + 4z\hat{k}$.
 - (b) Evaluate $\int_C (y^2x + y)dx + (x^2y + x)dy$ where *C* is the line segment from (1,1) to (2,3).
 - (c) Find the flux of the field $\vec{F} = 2x\hat{i} 3y\hat{j}$ outward across the ellipse $x = \cos t$, $y = 4\sin t$; $0 \le t \le 2\pi$.

UNIT-V

9. (a) Use Green's theorem to find the area enclosed by the ellipse $x = a \cos \theta, y = b \sin \theta, 0 \le \theta \le 2\pi$.

- (b) Verify Green's theorem in the plane $\int_{C} (3x^2 8y^2) dx + (4y 6xy) dy$ where C is the boundary of the region defined by $y = \sqrt{x}$, $y = x^2$. 5
- (c) Find the area of the portion cut from the paraboloid $x^2 + y^2 z = 0$ by the planes z=0 and z=10. 4
- 10. (a) Verify Stroke's theorem for $A = (2x y)\hat{i} yz^2\hat{j} y^2z\hat{k}$, where S is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ and C is its 5 boundary.
 - (b) Use Green's theorem, evaluate $\int (y^2 dx + x^2 dy)$
 - where C is the triangle bounded by z = 0, x + y = 1, y = 0. 5
 - (c) Verify divergence theorem for the sphere $x^2 + y^2 + z^2 = a^2$ if $\vec{F} = x\hat{i} + y\hat{j} + z\hat{k} .$ 4

-4-