2022 B.A./B.Sc. Third Semester CORE – 7 MATHEMATICS Course Code: MAC 3.31 (PDE & Systems of ODE)

Total Mark: 70 Time: 3 hours Pass Mark: 28

5

6

Answer five questions, taking one from each unit.

UNIT-I

1.	(a) Form the PDE by eliminating constants r and c from				
	$x^2 + y^2 + (z - c)^2 = r^2.$	3			
	(b) Find the general solution of the PDE				
	$(y+ux)u_x - (x+yu)u_y = x^2 - y^2.$	5			
	(c) Obtain the solution of the equation $(y-u)u_x + (u-x)u_y = x - y$				
	with the condition $u = 0$ on $xy = 1$.	6			
2.	(a) Form the PDE arising from the surface $u = x + y + f(xy)$.	3			
	(b) Use the method of separation of variables to solve $u_x = 2u_y + u$,				
	$u(x,0)=6e^{-3x}.$	5			
	(c) Reduce the first order PDE $yu_x + u_y = x$ to canonical form and				
	obtain its general solution.	6			
UNIT-II					

3.	(a)	Classify the second order PDE $u_{xx} - 2u_{xy} - 8u_{yy} = 0$ and find its	
		characteristic curves.	3

(b) Reduce the second order PDE $x^2 u_{xx} - y^2 u_{yy} = 0$ to canonical form.

(c) Derive the 2D Laplace's equation.

4. (a) Determine the region in the *xy*-plane where the second order PDE

$$u_{xx} + yu_{yy} + \frac{1}{2}u_y = 0$$
 is hyperbolic. 3
(b) Derive the one-dimensional heat equation. 5

(b) Derive the one-dimensional heat equation. 5 (c) Find the solution of the second order PDE $x^2u_{xx} + 2xyu_{xy} + y^2u_{yy} = 0$ by reducing it to canonical form. 6

UNIT-III

5.	(a) Determine the solution of the initial value problem:	4
	$u_u = u_{xx}, \ 0 < x < \infty, \ t > 0$	
	$u(x,0) = \cos\left(\frac{\pi x}{2}\right), \ 0 \le x < \infty$	
	$u_t(x,0) = 0, \ 0 \le x < \infty$	
	$u_x(x,0) = 0, \ t \ge 0$	
	(b) Determine the solution of the initial value problem:	4
	$u_u - c^2 u_{xx} = e^x, u(x,0) = 5, u_t(x,0) = x^2$	
	(c) Solve the heat conduction equation	
	$u_t = k u_{xx}, \ 0 < x < l, \ t > 0$	
	$u(0,t) = 0, u(l,t) = 0, t \ge 0$	
	$u(x,0) = f(x), \ 0 \le x \le l$	
	by the method of separation of variables.	6
6.	(a) Let $u(x,t)$ be the generalised solution of:	2+2=4
	$u_{tt}-u_{xx}=0, t>0$	
	$(x(1-x))$ if $0 \le x \le 1$	
	$u(x,0) = \begin{cases} x(1-x) & \text{if } 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$	
	$u_t(x,0) = 0$	
	Evaluate:	
	(i) $u\left(\frac{-1}{2},\frac{3}{4}\right)$ (ii) $u\left(\frac{1}{2},\frac{3}{4}\right)$	

(b) Determine the solution of the initial value problem:

$$u_{tt} - c^2 u_{xx} = x, u(x,0) = 0, u_t(x,0) = 3$$

4

6

4

4

(c) Obtain solutions of

$$u_{tt} = c^{2}u_{xx} = x, \ x > 0, t > 0$$
$$u(x,0) = f(x), \ x \ge 0$$
$$u_{t}(x,0) = g(x), \ x \ge 0$$
$$u(0,t) = p(t), \ t \ge 0$$

UNIT-IV

7. (a) Apply operator method to find the general solution of the linear

system:
$$x''+y'=e^{2t}$$

 $x'+y'-x-y=0$ 8

(b) Consider the linear system x' = 5x + 3yy' = 4x + y

(i) Show that $x = 3e^{7t}$ and $x = e^{-t}$ are linearly independent $y = 2e^{7t}$ $y = -2e^{-t}$

solutions $\forall t \in [a,b]$.

- (ii) Write the general solution.
- (iii) Find the solutions such that x = f(t), y = g(t) such that f(t) = 0, g(0) = 8.
- 8. (a) Convert $x^{i\nu} + 7x$ ""+ 4x "+ 5x 2x = 0 into a system of first order differential equations.
 - (b) Apply the transformation $t = e^w$ to convert the system

tx' = x + yty' = -3x + 5y into a system with constant coefficient and hence

find the general solution.

(c) Obtain the general solution of the linear system

$$\begin{array}{c} x' = 7x + 4y \\ y' = -x + 3y \end{array}$$
 6

UNIT-V

- 9. (a) Consider the initial value problem: y' = x 2y, y(0) = 1Apply the Euler's method to approximate the value of the solution y at x = 0.2 and 0.4 taking h = 0.2.
 - (b) Consider the initial value problem: y' = x + y, y(0) = 1, apply the fourth order Runge-Kutta method to approximate the value (up to the 5th decimal places) of the solution y at x = 0.1 with h = 0.1.
 - (c) Use the method of successive approximations to find the first three members $\varphi_1, \varphi_2, \varphi_3$ of a sequence of functions that approaches the exact solution of the initial value problem $y' = e^x + y^2$, y(0) = 0. 6
- 10. (a) Use the method of successive approximations to find the first three members $\varphi_1, \varphi_2, \varphi_3$ of a sequence of functions that approaches the exact solution of the initial value problem y' = xy, y(0) = 1.
 - (b) Discuss Range-Kutta method for approximating the values of the solution of the initial value problem $y' = f(x, y), y(x_0) = y_0$. 4
 - (c) By using an appropriate example, show that the improved Euler's method is a better approximation than the Euler's method.